

Appendix B1

MODULE HANDBOOK OF PROCESS EQUIPMENT AND CONTROL ENGINEERING PROGRAM

Contents

Mathematics, Physics and Chemistry	1
Calculus (1)	1
Calculus (2)	5
Linear Algebra	8
Probability Theory and Mathematical Statistics	
College Chemistry	
College Physics (1)	20
College Physics (2)	
Informatics	
Information Technology	
Introduction to Computer	
Program Design and Practice	
Engineering Fundamentals	41
Fundamentals of Engineering Drawing	41
Electrical Engineering and Electronics	45
Mechanics of Materials	
Theoretical Mechanics	
Fundamentals of Engineering Materials	61
Mechanical Engineering Drawing	
Engineering Thermodynamics	
Machine Design	
Engineering Fluid Mechanics	
Process Control Theory	
Heat Transfer	
Introduction to Process Equipment and Control Engineering	
Engineering Applications	
Safety Technology of Process Equipment	
Computer Modeling Practice	
Measurement and Control Technology of Power Engineering	
Process Principle and Equipment	
Seal Technology of Process Equipment	
Design of Process Equipment	
Process Fluid Machinery	
Control Technology and Application of Process Equipment	129
Chemical Drawing	133
Fabrication and Examination of Process Equipment	137
Electives	141
Chemical Reaction Engineering	141
Chemical Process Technique	145
Process System Identification and Simulation	148
Energy Management	

University of Shanghai for Science and Technology	
Process Analysis and Integration	
FEM Numerical Simulation	161
CFD Numerical Simulation	
Complete Set Technology of Process Equipment	
Water Treatment Engineering	
Equipment Fault Diagnosis	
Foreign Language	
Fundamental English	
Intensive English	
Interactive Practical English	
Reading and Writing in Technical English	
Interactive Comprehensive English	
Practical Training	
Metalworking Practice	
Comprehensive Experiment	
Professional Comprehensive Course Design	215
Innovation and Entrepreneurship Project Training	
Internship	
Bachelor Thesis	

Note: the contents with mark (**) are the key points, the contents with mark (*) must be mastered and the contents without mark are the points required to be understood.

Mathematics, Physics and Chemistry

Calculus(1) Mathematics, Physics and Chemistry Competence field Module designation Calculus (1) Code, if applicable 22000210 Subtitle, if applicable Semester(s) in which the module is 1st semesters taught Person responsible for the module Professor ZHANG Weiguo Lecturer Professor JIA Gao Professor YUAN Sanling Associate Professor YU Zhixian Associate Professor LIU Xiaojun Associate Professor WEI Gongming Lecturer ZHANG Tiansi Lecturer LIU Ling etc. Language Chinese Relation to curriculum Fundamental course for students related to science and engineering majors. Calculus (1) and Calculus (2) forming complete Calculus course. Calculus is a deductive science and a branch of pure mathematics. At the same time, it has strong roots in physical problem and it derives a strong theoretical development with sound training in technique. Thus, as a basic course for university students majored in engineering related, it provides an important foundation for the subsequent mathematics, physics and professional courses, and provides the necessary mathematical tools for the Innovation and Entrepreneurship Project Training, Bachelor Thesis. Type of teaching, contact hours Target students: students of science and engineering programs related Type of teaching: Most of the time is for lectures, and some time is for classroom discussions Contact hours: 96 hours Of which. Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour

Technology
Size of class: 60-90 students
Workload = 180 hours
Contact hours $= 96$ hours
Self-study hours = 84 hours
6.0
Students with class attendance rate over $2/3$ and
assignment completion rate over 2/3 are allowed to take
the exam.
None
Module objectives:
 Knowledge: This course aims to introduce a fundamental knowledge of Calculus. It mainly includes function and limit, derivatives and differentials, mean value theorem and its applications, indefinite integral, definite integral, application of definite integral, introduction to differential equations. Skills: Understand the theory and methods of derivative and integral for functions of several variables. Skillfully compute partial derivatives and multiple integrals. Competences: Providing students with an in-depth applied mathematics training in their capability of both analyzing and solving problems in the field. This course will also provide the foundation for students' studies in other following course to apply the theory to and skills to practice, e.g. problems in
geometry and physics.
Part A. Theoretical teaching (96 contact hours, 84 self-
study hours)
Calculus (1)
Chapter 1 . Functions and Limits (12 contact hours and 12 self-study hours)
 Understand the definition of a function; *
• Establish a simple practical model with functional
relationship;*
• Understand the definition of a limit and master rules for working with limits; *
• Use properties of infinitesimal to calculate the limit;
• Understand the concept of the continuity function;*
• Grasp clearly rules and properties of continuous
• Grasp clearly rules and properties of continuous functions on closed interval. **

h	ours and 12 self-study hours)
•	Deeply understand definition of derivative at a point
	and derivative functions;**
•	Understand geometric significance of derivatives ;*
•	Skillfully grasp rules for derivatives, higher-order
	derivatives, and derivatives of functions defined by
	parametric functions and implicit functions;**
•	Understand the concept of differential for a
	function.*
C	Chapter 3. Mean Value Theorem and Its Applications
(1	14 contact hours and 12 self-study hours)
•	Grasp Rolle's theorem, Lagrange's mean value
	theorem and Cauchy's mean value theorem; **
•	Be familiar with applications of L'Hospital's rule;*
•	Clear the monotonicity and concavity of curves and
	points of inflection;*
•	Sketch the graph of functions;*
•	Be able to find extremum, maximum and minimum,
	and their applications.*
C	Chapter 4. Indefinite Integrals (14 contact hours and 12
S	elf-study hours)
•	Understand the concept of indefinite integral and its
	properties; *
•	Skillfully grasp integration by substitution and some
	basic integral formula;**
•	Skillfully master integration by parts;**
•	Be able to calculate integrations of Trigonometric
	functions and Rational functions.*
C	Chapter 5. Definite Integrals (14 contact hours and 12
S	elf-study hours)
•	Understand the definition of definite integral, its
	properties and the fundamental theorem, some
	geometric explanatory remarks;**
•	Be familiar with the Newtonian - Leibniz formula; *
•	Skillfully Master integration by substitution and
	integration by parts;**
•	Calculate two kinds of improper integral.*
0	Chapter 6. Geometric and Physical Application of
D	Definite Integral. (14 contact hours and 12 self-study
h	ours)
•	Apply the definite integrals to calculate Areas of
	more complicated plane regions, Volume, the arc
	length of curves and Area in terms of polar

University of Shanghai for Science ar	ld Technology
	coordinates; **
	• Be able to calculate Work, Pressure and Gravity by
	using definite integral.
	Chapter 7. Introduction to Differential Equations (14
	contact hours and 12 self-study hours)
	• Understand the basic concept of differential equations;*
	• Be able to find complete solutions and the particular solution for some special differential equations;*
	• Be able to formulate and solve differential equations
	according to some geometrical and various physical
	problems.*
	Part B. Experiment / practice teaching: 0 hour.
Study and examination requirements	After-school exercises should be completed by students
and forms of examination	independently after each class. Usual performance
	accounts for 30%, consisted of assignments, mid-semester
	examination and attendance; final exam (closed book
	written examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] Higher mathematics2, Department of mathematics,
	Tongji University, higher education press, sixth
	edition, 2007.
	2. Reference books
	[1] Guidance to higher mathematics, laboratory of higher
	mathematics, University of Shanghai for Science and
	Technology, 2005.

Calculus(2)	
Competence field	Mathematics, Physics and Chemistry
Module designation	Calculus (2)
Code, if applicable	22000220
Subtitle, if applicable	
Semester(s) in which the module is	2 nd semesters
taught	
Person responsible for the module	Professor ZHANG Weiguo
Lecturer	Professor JIA Gao
	Professor YUAN Sanling
	Associate Professor YU Zhixian
	Associate Professor LIU Xiaojun
	Associate Professor WEI Gongming
	Lecturer ZHANG Tiansi
	Lecturer LIU Ling etc.
Language	Chinese
Relation to curriculum	Fundamental course for students related to science and
	engineering majors. Calculus (1) and Calculus (2) forming
	complete Calculus course. Calculus is a deductive science
	and a branch of pure mathematics. At the same time, it has
	strong roots in physical problem and it derives a strong
	theoretical development with sound training in technique.
	Thus, as a basic course for university students majored in
	engineering related, it provides an important foundation
	for the subsequent mathematics, physics and professional
	courses, and provides the necessary mathematical tools for
	the Innovation and Entrepreneurship Project Training,
	Bachelor Thesis.
Type of teaching, contact hours	Target students: students of science and engineering majors related
	Type of teaching: Most of the time is for lectures, and
	some time is for classroom discussions
	Contact hours: 96 hours
	Of which,
	Theoretical teaching: 96 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 0 hour
	Size of class: 60-90 students
Workload	Workload = 180 hours
W OINUau	Contact hours = 96 hours
Credit points(ECTS)	Self-study hours = 84 hours 6.0
Requirements according to the	Students with class attendance rate over 2/3 and

University of Shanghai for Science ar examination regulations	assignment completion rate over 2/3 are allowed to take
6	the exam.
Recommended prerequisites	None
Module objectives/intended learning	Module objectives:
outcomes	• Knowledge: This course aims to introduce a
	fundamental knowledge of Calculus. It mainly
	includes function and limit, derivatives and
	differentials, mean value theorem and its
	applications, indefinite integral, definite integral,
	application of definite integral, introduction to
	differential equations.
	• Skills: Understand the theory and methods of
	derivative and integral for functions of several
	variables. Skillfully compute partial derivatives and
	multiple integrals.
	• Competences: Providing students with an in-depth
	applied mathematics training in their capability of
	both analyzing and solving problems in the field.
	This course will also provide the foundation for
	students' studies in other following course to apply
	the theory to and skills to practice, e.g. problems in
	geometry and physics.
Content	Part A. Theoretical teaching (96 contact hours, 84 self-
	study hours)
	Chapter 8. Space Analytic Geometry and Vector
	Algebra (24 contact hours and 21 self-study hours)
	• Definition of vector; *
	• Scalar and vector product; *
	• Surface and its equation; *
	• Line and its equation; **
	• Plane and its equation. **
	Chapter 9 . Derivatives of Functions of Several Variables
	and Applications (24 contact hours and 21 self-study
	hours)
	 Definition of function of several variables; * Destion derivatives: **
	 Partial derivatives; ** The differentials of functions; **
	 The chain rule for compound functions; **
	 Partial derivative of implicit functions; **
	 Directional derivatives and gradients; **
	 Maximum and minimum: the method of Lagrange
	multiplier.*
	Chapter 10. Multiple Integrals (24contact hours and 21
	Chapter 10. Multiple integrals (24contact nours and 21

A H - M	
^v db	
1800	

	self-study hours)
	• Double integrals. **
	• Definition and properties; *
	• Computation: right angled and polar coordinates.**
	• Triple integrals. Definition and properties; *
	• Computation: right angled, cylindrical and spherica
	surface coordinates.**
	• Applications: geometry and physics.
	Chapter 11. Curve Integrals and Surface Integrals
	(24contact hours and 21 self-study hours)
	• Curve integral for arc length; *
	Curve integral for coordinates; *
	• Green's formula and applications; **
	• Surface integral for area; **
	• Surface integral for coordinate; **
	• Gauss's formula: applications to geometry ar
	physics.*
	Part B. Experiment / practice teaching: 0 hour.
Study and examination requirements	After-school exercises should be completed by studen
and forms of examination	independently after each class. Usual performance
	accounts for 30%, consisted of assignments, mid-semest
	examination and attendance; final exam (closed boo
	written examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, las
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] Higher mathematics2, Department of mathematic
	Tongji University, higher education press, six
	edition, 2007.
	2. Reference books
	[1] Guidance to higher mathematics, laboratory of high
	I mathematical University of Changhai for Caismaa a
	mathematics, University of Shanghai for Science an Technology, 2005.

Linear Algebra

Competence field	Mathematics, Physics and Chemistry
Module designation	Linear Algebra
Code, if applicable	2200621
Subtitle, if applicable	
Semester(s) in which the module	2 nd semester
is taught	
Person responsible for the	Professor LIU Xiping
module	
Lecturer	Professor LIU Xiping
	Associate Professor HE Changxiang
	Associate Professor FAN Hongfu
	Lecturer Dr. HU Jianhua
	Lecturer Dr. WEI Lianxin
	Lecturer Dr. WU Baofeng
Language	Chinese
Relation to curriculum	Linear Algebra is an important branch of Mathematics which mainly study the vectors, vector spaces (or linear spaces), linear equations and linear transformations. The theory of the vector spaces is an important subject of modern Mathematics. Through the analytic geometry, Linear Algebra isdescribed concretely and specifically. Therefore, Linear Algebra is widely used in abstract algebras, functional analysis and computational Mathematics. Its theory is generalized into operator theory. For the nonlinear model in scientific research can usually be approximated by a linear model, the Linear Algebra is widely used in natural science and social science. As a common fundamental course of engineering, the theory of Linear Algebra helps students train the ability to solve problems and improve the ability of logical thinking and reasoning ability. It is necessary for the subsequent courses and the related professional courses for students of
Type of teaching, contact hours	engineering. Target students: students of engineering and related programs Type of teaching: Most of the time is for lectures, and some
	time is for classroom discussions Contact hours: 32 hours Of which, Theoretical teaching:32 hours Experiment / practice teaching: 0 hour
	Computer practice: 0 hour

University of Shanghai for Science and Technology	
	Size of class: 40-60 students
Workload	Workload = 60 hours
	Contact hours = 32 hours
	Self-study hours = 28 hours
Credit points	2.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	None
Module objectives/ intended learning outcomes /	 Module objectives: Linear algebra is a common fundamental course of engineering. It is widely used in modern mathematics. It plays an important role in the related subjects. Knowledge: The theory of linear algebras mainly includes the theory of matrices, determinant, system of linear equations, vector spaces, eigenvalues and eigenvectors, quadric forms. Skills: Through learning the course, students are able to understand the definition and properties of determinant and calculate the determinant; master the operations between matrices; be familiar with some special matrices, such as diagonal matrices, symmetrical matrices, antisymmetric matrices, invertible matrices; understand the linear dependence and linear independence of vectors; master the structure of all the solutions of linear equations and
	 find all solutions of system of linear equations; computing eigenvalues and eigenvectors of square matrices; master the method of diagonalization of matrices; give the normal orthogonal basis in n-dimensional linear space; familiar with quadric forms and their representations by matrices; transform the quadratic forms to their standard forms. Competences: On successful learning of this course, students will master the basic theory and method of linear algebra, and improve the abilities to solve the practical problems.
Content	Part A. Theoretical teaching (32 contact hours, 28 self-
	study hours)
	Chapter 1: Determinant (6 contact hours and 6 self-study
	hours)
	The concept of determinant; *
	-
	• The properties of determinant; **

	• The expansion of determinant; **
	• Cramer theorem.
	Chapter 2: Matrices and Their Operations (6 contact hours
	and 5 self-study hours)
	• The concept of matrices;
	• Matrices and their operations; **
	• Inverse of matrices;**
	• Elementary matrices and the elementary
	transformation of matrices;
	• The rank of matrices; **
	• Block matrices.
	Chapter 3: N-dimensional Vector (8 contact hours and 6
	self-study hours)
	• N-dimensional vector and their operations;*
	• Vector groups and their linear dependence; **
	• The rank of the vector groups;**
	• The concept of vector space;
	• The inner product of the vector space R^n and the
	standard orthogonal basis of the vector space R^n ; *
	Chapter 4: System of Linear Equations (4 contact hours
	and 3 self-study hours)
	• Method of the elimination to solve the linear
	equations;
	• The structure of the solutions of homogeneous linear
	equations; **
	• The structure of the solutions of non-homogeneous
	linear equations. **
	Chapter 5: Eigenvalues and Eigenvectors of Matrices (4
	contact hours and 4 self-study hours)
	• Eigenvalues and eigenvectors of matrices n;**
	• Similar matrices; *
	• Diagonalization of symmetric real matrices;*
	Chapter 6: Quadratic Form (4 contact hours and 4 self-
	study hours)
	• Quadratic form and its matrix; Congruence of
	matrices;
	• The standard form of quadratic form; **
	• Law of inertia and positively definite matrices .**
	Part B. Experiment / practice teaching: 0 hour.
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, attendance and discussion after class; final

University of Shangha	i for Science and Technology
	exam (closed book written examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] Liu Xiping, Cao Weili and Yu Zhengsheng, Linear
	algebras, Science Press, 2013.9
	2. Reference books
	[1] Department of Applied Mathematics of Usst,
	Learning guidance of Linear Algebras, Science Press,
	2014.2
	[2] Cao Weili etc, Linear Algebras, Hunan Science and
	Technology Press,2010.1
	[3] Department of mathematics of Tongji University,
	Linear Algebras, High education press, 2007.5

atical Statistics
Mathematics, Physics and Chemistry
Probability Theory and Mathematical Statistics
22000172
3 rd semester
Professor LIU Xiping
Associate Professor: ZHANG HaiQiang
Associate Professor: FAN Hongfu
Associate Professor: CAO Weili
Associate Professor: HE Changxiang
etc.
Chinese
The goal of the course is to extend students' knowledge of probability and statistical methods from the bachelor branch and to provide theoretical background for studying and applying advanced statistical methods. Probability Theory and Mathematical Statistics is the required course for Engineering program. The emphasis of this course is on basic probability and distribution theory, which are the foundation of mathematical statistics. This course provides an excellent preparation for undergraduate students who are preparing for study in statistically based areas such as engineering experiments, psychometrics, or biostatistics.
Target students: sophomores of science and engineering and related programs Type of teaching: Most of the time is for lectures, and some time is for classroom discussions Contact hours: 48 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 40-60 students
Workload = 90 hours
Contact hours = 48 hours
Contact nours – 48 nours
Self-study hours = 42 hours
Self-study hours = 42 hours
Self-study hours = 42 hours3.0Students with class attendance rate over 2/3 and assignment
Self-study hours = 42 hours 3.0
Self-study hours = 42 hours3.0Students with class attendance rate over 2/3 and assignment completion rate over 2/3 are allowed to take the exam.

Probability Theory and Mathematical Statistics

outcomes	A prime objective of the course sequence is to present
	techniques and basic results of probability and mathematical
	statistics at a rigorous and advanced calculus level. To
	develop the probabilistic tools and language of mathematical
	statistics, this course describes probabilistic models for and
	properties of random variables and vectors, moments and
	common probability distributions. The theory of estimation,
	confidence sets and hypothesis testing for common
	parametric models are investigated.
	• Knowledge: Understand the axiomatic approach to
	probability, counting and combinatorial methods, and
	Bayes' Theorem. Understand random variables and
	their properties, including marginal and conditional
	distributions, expectation, conditional expectation,
	covariance and correlation, moment generating
	functions, and distributions of functions of one or more
	random variables. Recognize and learn the properties
	of important probability distributions.
	 Skills: Gain the ability to prove results in probability.
	Use statistical software to simulate random phenomena
	and to carry out probability computations for standard
	distributions.
	• Competences: Upon successful completion of this
	course, students will be able to study, correctly apply
	and interpret different statistical multivariate methods,
	which can be helpful to solve related problems in
	subsequent professional courses and projects.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1: Random Events and Probability (6 contact hours
	and 5 self-study hours)
	Outline: Classical, relative frequency and axiomatic
	definitions of probability, addition rule and conditional
	probability, multiplication rule, total probability, Bayes'
	Theorem and independence, problems.
	• Introduction to probability;
	Conditional probability;*
	• Independence of random events;*
	Chapter 2: Random Variables and Distribution (8 contact
	hours and 6 self-study hours)
	Outline:
	Discrete and continuous random variables, probability
	mass, probability density and cumulative distribution

functions, Special distributions: Discrete uniform, binomial, geometric, Poisson, continuous uniform, exponential, gamma, normal

- Introduction to random variables and distributions;*
- Discrete random variables;*
- Continuous random variables;*
- Distribution of random variables function;**

Chapter 3: Expectation and Variance (4 contact hours and 4 self-study hours)

Outline: mathematical expectation and variance, median and quantiles.

- Expectation and variance;**
- Median and quantiles;**

Chapter 4: Multi-dimensional Random Variables and Distribution (8 contact hours and 8 self-study hours)

Outline: Joint, marginal and conditional distributions, product moments, independence of random variables, bivariate normal distribution, problems. Multi-dimensional random variables and joint and marginal.

- Distributions: Sections;*
- Conditional distributions;*
- Independence of random variables;*
- Distribution of multi-dimensional random variables;*
- Bivariate expectation and variance;*
- Moment, covariable and correlation coefficient;*

Chapter 5: Law of Large Numbers and Central Limit Theorem (6 contact hours and 5 self-study hours) Outline: Chebyshev's inequality, Law of large numbers the central limit theorem, problems.

- Chebyshev's inequality;*
- Law of large numbers;**
- Central Limit Theorem;*

Chapter 6: Basic Conceptions of Statistics (4 contact hours and 4 self-study hours)

Outline: distributions of the sample mean and the sample variance for a normal population, Chi-Square, t and F distributions, problems.

- Basic conceptions of statistics;**
- Sample variance and sample distributions;**

Chapter 7: Estimation Problems (6 contact hours and 5 selfstudy hours)

Outline: Unbiasedness, consistency, the method of moments and the method of maximum likelihood

University of Shanghai for Science and Technology estimation, confidence intervals for parameters in one sample and two sample problems of normal populations, confidence intervals for proportions, problems. The method of point estimation problems;* • The evalution criterion of point estimation;** Confidence intervals;** • Chapter 8: Testing Hypothesis (6 contact hours and 5 selfstudy hours) Outline: Null and alternative hypotheses, the critical and acceptance regions, two types of error, power of the test, the most powerful test and Neyman-Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions, problems. Basic conceptions of testing hypothesis;* Testing hypothesis of expectation of • normal populations;** Testing hypothesis of variance of normal populations;* Part B. Experiment / practice teaching(0 hour). Study and examination requirements After-school exercises should be completed by students and forms of examination independently after each class. Usual performance accounts for 30%, consisted of assignments, mid-semester examination and attendance; final exam (closed book written examination) accounts for 70%. Media employed Beamer and board/whiteboard, electronic scripts, ppt projection, computer practising center, and working documents Reading list 1. Recommended book [1] Ci-Nan Ye and Xi-Ping Liu, Probability Theory and Mathematical Statistics, Science Press, 2010. [2] Office of Engineering Mathematics, USST, The study guide to probability theory and mathematical statistics. [3] Zhou Sheng, Shi-Qian Xian and Cheng-Yi Pan Probability Theory and Mathematical Statistics, Zhejiang University Press, 2008. 2. Reference books [1] Shu-Yuan He, Probability Theory and Mathematical Statistics, Higher Education Press, 2006.

Competence field Mathematics, Physics and Chemistry Module designation College Chemistry Code, if applicable 22000761 Subtitle, if applicable 22000761 Semester(s) in which the module 1st semester is taught Person responsible for the module Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. QU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. AN Yarui Lecturer JI GU Ning Lecturer ZHAO Yuefeng Lecturer YU Zhihao Language Chinese Relation to curriculum College Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment substract and logical thinking and critical analytica methods in aqueous solution, material structure, elem	College Chemistry		
Module designation College Chemistry Code, if applicable 22000761 Subtitle, if applicable 1st semester Semester(s) in which the module 1st semester Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. GU Yingying Lecturer Dr. GU Song Lecturer Dr. GU Ning Lecturer Dr. GU ONing Lecturer Dr. GU ONing Lecturer Dr. GU ONing Lecturer JIA Chengzheng Lecturer JIA Chengzheng Lecturer YU Zhihao College Chemistry is a compulsory basic course for undergraduates of science and engineering majors. It mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses. Type of teaching, contact hours Target students: students of science and engineering major related. <td></td> <td>Mathematics Physics and Chamistry</td>		Mathematics Physics and Chamistry	
Code, if applicable 22000761 Subtitle, if applicable 1st semester Semester(s) in which the module 1st semester Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Song Lecturer Dr. QU Song Lecturer Dr. QU Song Lecturer Dr. QU Song Lecturer Dr. GUO Ning Lecturer Dr. GU Ning Lecturer Dr. GUO Ning Lecturer JI AG Yuefeng Lecturer YU Zhihao Chengzheng Lecturer YU Zhihao College Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles an skills of chemistry can lay the foundation for the study of further professional courses. Type of teach	-		
Subtitie, if applicable Semester(s) in which the module 1st semester is taught Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. QU Song Lecturer Dr. QU Song Lecturer Dr. QU Song Lecturer Dr. GUO Ning Lecturer Dr. GUO Ning Lecturer ZHAO Yuefeng Lecturer YU Zhihao College Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses. Type of teaching, contact hours Target students of science and engineering major related. Type			
Semester(s) in which the module is taught 1 st semester Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. GU Yingying Lecturer Dr. GU Song Lecturer Dr. JI Yajun Lecturer Dr. GUO Ning Lecturer Dr. GUO Ning Lecturer ZHAO Yuefeng Lecturer YU Zhihao Lecturer YU Zhihao Language Chinese Relation to curriculum College Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses. Type of teaching, contact hours Target students: students of science and engineering major related. Type of teaching, contact hours Target students: students of science and engineering major related.		22000781	
is taught Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. GU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer Dr. GU Ning Lecturer Dr. GUO Ning Lecturer Dr. GU Ning Lecturer ZHAO Yuefeng Lecturer ZHAO Yuefeng Lecturer ZHAO Yuefeng Lecturer VU Zhihao College Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles an skills of chemistry can lay the foundation for the study o further professional courses. Type of teaching, contact hours Target students: students of science and engineering major related. Type of teaching, contact hours Target students: foretical teaching, experiment teaching. Contact hours: 96 hours		1st	
Person responsible for the module Professor CHANG Haizhou Lecturer Associate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. GU Yingying Lecturer Dr. GU Song Lecturer Dr. GU Ning Lecturer Dr. AN Yarui Lecturer Dr. AN Yarui Lecturer Dr. GU ONing Lecturer Dr. GU Ning Lecturer LI Jing Lecturer VI ZhAO Yuefeng Lecturer VI Zhihao Language Chinese Relation to curriculum College Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses. Type of teaching, contact hours T		1 st semester	
LecturerAssociate Professor Dr. MA Jie Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. GU Yingying Lecturer Dr. QU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer Dr. GUO Ning Lecturer ZHAO Yuefeng Lecturer ZHAO Yuefeng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching; Contact hours: 96 hours Of which,		Desferrer CHANC Heighter	
Associate Professor Dr. OUYANG Ruizhuo Lecturer Dr. GU Yingying Lecturer Dr. QU Song Lecturer Dr. QU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer LI Jing Lecturer ZHAO Yuefeng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching; Contact hours: 96 hours Of which,			
Lecturer Dr. GU Yingying Lecturer Dr. QU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer LI Jing Lecturer ZHAO Yuefeng Lecturer YU Achengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching; Contact hours: 96 hours Of which,	Lecturer		
Lecturer Dr. QU Song Lecturer Dr. JI Yajun Lecturer Dr. AN Yarui Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer ZHAO Yuefeng Lecturer ZHAO Yuefeng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemicar reaction, four major equilibria and related analyticar methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,			
Lecturer Dr. JI YajunLecturer Dr. AN YaruiLecturer Dr. AN YaruiLecturer Dr. GUO NingLecturer LI JingLecturer JIA ChengzhengLecturer YU ZhihaoLanguageRelation to curriculumCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,			
Lecturer Dr. AN Yarui Lecturer Dr. GUO Ning Lecturer LI Jing Lecturer ZHAO Yuefeng Lecturer JIA Chengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and th skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of th scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching; Contact hours: 96 hours Of which,			
Lecturer Dr. GUO Ning Lecturer LI Jing Lecturer ZHAO Yuefeng Lecturer JIA Chengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching; theoretical teaching, experiment teaching Contact hours: 96 hours Of which,		5	
Lecturer LI Jing Lecturer ZHAO Yuefeng Lecturer JIA Chengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,			
Lecturer ZHAO Yuefeng Lecturer JIA Chengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemicar reaction, four major equilibria and related analyticar methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,		_	
Lecturer JIA Chengzheng Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study o further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching Contact hours: 96 hours Of which,			
Lecturer YU ZhihaoLanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching Contact hours: 96 hours Of which,			
LanguageChineseRelation to curriculumCollege Chemistry is a compulsory basic course fo undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching, experiment teaching Contact hours: 96 hours Of which,			
C UCollege Chemistry is a compulsory basic course for undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemicar reaction, four major equilibria and related analyticar methods in aqueous solution, material structure, elemen compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,	.		
undergraduates of science and engineering majors. I mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemica reaction, four major equilibria and related analytica methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiment in this course can develop students' skills including inquiry abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.Type of teaching, contact hoursTarget students: students of science and engineering major related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,			
related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which,		undergraduates of science and engineering majors. It mainly introduces the basic principles of chemistry and the skills of chemistry. The course mainly includes aggregation state, dispersion system, and basic law of chemical reaction, four major equilibria and related analytical methods in aqueous solution, material structure, element compound and instrumental analysis method. Experiments in this course can develop students' skills including inquiry, abstract and logical thinking and critical analysis of the scientific issues. The understanding of basic principles and skills of chemistry can lay the foundation for the study of further professional courses.	
Experiment / practice teaching: 20 hour Computer practice: 0 hour Size of class: 60-100 students	Type of teaching, contact hours	related. Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which, Theoretical teaching: 76 hours Experiment / practice teaching: 20 hour Computer practice: 0 hour	
Workload Workload = 180 hours	Workload		

University of Shanghai for Scier	ice and Technology
	Contact hours $= 96$ hours
	Self-study hours $= 84$ hours
Credit points	6.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over 2/3 and performing required
	experiments are allowed to take the exam.
Recommended prerequisites	None.
Module objectives/intended	Module objectives:
learning outcomes	• Knowledge: Understand basic principles of chemistry
/	with emphasis on thermodynamics, kinetics,
	equilibria, bonding, and electrochemistry. A brief
	introduction to inorganic, organic and polymer
	chemistry.
	• Skills: Display mastery of those concepts of chemistry
	needed to succeed in chemistry-based courses,
	corresponding skills of solving problems. Master
	basic measurement skills in chemistry experiments.
	• Competences: Have a perspective of the scope of
	modern chemistry and its implications for society.
	Develop students' ability of inquiry, abstract and
	logical thinking and critical analysis of scientific
	issues.
Content	Part A. Theoretical teaching (76 contact hours, 68 self-
	study hours)
	Chapter 1: Thermochemistry (12 contact hours and 10 self-
	study hours)
	• Concepts of thermochemistry;
	• The First Law of Thermodynamics;**
	• The concept of enthalpy;*
	• Standard enthalpies of formation;*
	• Evaluating enthalpy and entropy changes;*
	• Fuels, sources of energy and the utilizations.
	Chapter 2: Principles of Chemical Reactions (12 contact
	hours and 12 self-study hours)
	• The concept of entropy;*
	• Evaluating enthalpy and entropy changes;**
	• The Second Law of Thermodynamics;**
	• Standard free energy change;*
	Chemical equilibrium;**
	• The rate of a chemical reaction;*
	• Environmental chemistry and green chemistry.
	Chapter 3: Solutions and Their Properties (12 contact hours
	and 10 self-study hours)

•	Types of solutions and solution concentration;*
•	Freezing-point depression, boiling point elevation and
	osmotic pressure of solutions;*
•	Theories of acids and bases;*
•	Ionization equilibrium;*
•	Buffer and pH control;**
•	Precipitation and Dissolution Equilibrium;**
•	Water purification and wastewater treatment.*
CI	hapter 4: Electrochemistry (12 contact hours and 10 self-
stu	udy hours)
•	Galvanic cell;*
•	Ecell, ΔGo , and Keq;*
•	Standard electrode potentials;**
•	Ecell as a function of concentrations;*
•	Batteries: producing electricity through chemical
	reactions;*
•	Electrolysis: causing nonspontaneous reactions to
	occur;*
•	Corrosion and the protections.*
CI	hapter 5: Atomic, Molecular and Crystal Structures (12
со	ontact hours and 10 self-study hours)
•	Atomic structure;**
•	The Periodic Law and the Periodic Table;**
•	Periodic properties of the elements;**
•	Chemical bonding;*
•	Molecular orbitals;*
•	The crystalline solid state.*
Cl	hapter 6: Inorganic Chemistry (8 contact hours and 8 self-
sti	udy hours)
•	Properties of oxides and halides;*
•	Coordination compounds;*
•	Inorganic materials: alloy and inorganic nonmetallic
	materials.*
	hapter 7: Organic Chemistry (8 contact hours and 8 self-
stu	udy hours)
•	Organic compounds and structures: an overview;
•	Polymerization reactions;**
•	Structures and properties of polymer;**
•	Applications and molecular design.*
	art B. Experiment / practice teaching (20 contact
	ours and 16 self-study hours)
1)	
	contact hours and 4 self-study hours)*

University of Shanghai for Science and Technology		
	2) Electrogalvanization (4 contact hours and 2 self-	
	study hours)*	
	3) Determination of iron content by spectrophotometry	
	(4 contact hours and 4 self-study hours)**	
	4) Determination of water quality by chemical analysis	
	(4 contact hours and 2 self-study hours)**	
	5) Iodine clock reaction- Hydrogen peroxide variation	
	(4contact hours and 4 self-study hours)*	
Study and examination	Final score includes: usual performance (20%); experiment	
requirements and forms of	(10%), final exam (closed-book written examination)	
examination	(70%)	
	Usual performance includes: assignment, attendance rate,	
	and computer practice	
	Experiment score includes: experiment report (50%); and	
	experiment exam (50%)	
Media employed	PPT courseware, multimedia computers, projectors, laser	
	pens, blackboards, etc.	
Reading list	1. Recommended book	
	[1] XU Duanjun etc., General Chemistry (6th edition),	
	Higher Education Press, 2012	
	[2] ZHOU Shilin etc., Experiments in General Chemistry,	
	Science Press, 2013	
	2. Reference books	
	[1] Ralfh H. Petrucci etc., General Chemistry: Principles	
	and Modern Applications (10th edition), Prentice	
	Hall, 2010	
	[2] HUA Tongwen etc., Principles of General Chemistry,	
	Peking University Press, 2013	
	[3] ZHOU Xuguang etc., General Chemistry, Tsinghua	
	University Press, 2011	

College Physics (1)	
Competence field	Mathematica Division and Chamistry
1	Mathematics, Physics and Chemistry
Module designation	College Physics (1)
Code, if applicable	20000050
Subtitle, if applicable	and
Semester(s) in which the module	2 nd semester
is taught	
Person responsible for the module	Professor GU Zhengtian
Lecturer	Associate Professor CHEN Jun
	Associate Professor Dr. TONG Yuanwei
	Associate Professor Dr. YAO Lanfang
	Associate Professor WANG Lijun
	Lecturer MA Shanshan
	Lecturer YAN Feinan
	Lecturer Dr. LIU Yuan
	Lecturer HUANGFU Quansheng
	Lecturer LIANG Liping
	Lecturer NI Weixin
	Lecturer XU Chunyan
	Lecturer Dr. LI Yuqiong
	Lecturer Dr. DING Yaqiong
	Experimentalist ZHOU Qun
	Experimentalist Tang Meng
	Experimentalist Ma Shanshan
	Experimentalist Cai Xiongxiang
	Experimentalist Guo Li
Language	Chinese
Relation to curriculum	Fundamental course for engineering major students.
	College Physics (1) and College Physics (2) forming
	complete College Physics course. Physics is a science to
	research the basic structure and the interaction between
	matters. It also investigates the most basic and most
	common form of movement and their mutual
	transformations. The research strategy of physics is the
	foundation of natural science and engineering technology.
Type of teaching, contact hours	Target students: students of science and engineering related
	programs
	Type of teaching: theoretical teaching, experiment teaching
	Contact hours: 80 hours
	Of which,
	Theoretical teaching: 64 hours
	Experiment / practice teaching: 16 hours
	Computer practice: 0 hour
	Computer practice. O noui

University of Shanghai for Science and Technology		
	Size of class: 60-90 students	
Workload	Workload = 150 hours	
	Contact hours = 80 hours	
	Self-study hours $= 70$ hours	
Credit points	5.0	
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over 2/3 and performing required	
	experiments are allowed to take the exam.	
Recommended prerequisites	Calculus	
Module objectives/intended	Module objectives:	
learning outcomes	With emphasis on College Physics course, students will be	
/	familiar with basic ideas of physics methods, students will	
	gain a professional and improved ability to analyze and	
	solve physical problems.	
	On successful learning of this course module, the student	
	should be able to demonstrate the following learning	
	outcomes:	
	• Knowledge: students are required to master the basic	
	concepts and principles in mechanics, thermophysics	
	and electrostatics.	
	• Skills: Acquire the ability of abstract thinking.	
	Improve self-study ability. Acquire the ability to	
	analyze and solve problems. Capable of computing	
	and judging. Use mathematical tools to solve general	
	problems in physics, calculation and estimation are	
	included.	
	• Competences: Analyze engineering problems from a	
	viewpoint of physics, and solve problems using	
	knowledge and skills mentioned above.	
Content	Part A. Theoretical teaching (64 contact hours; 58 self-	
	study hours)	
	Part One Mechanics	
	Chapter 1: Kinematics (6 contact hours and 6 self-study	
	hours)	
	• Frame of reference, particle *	
	• Position vector and displacement, velocity and	
	acceleration **	
	Circular motion, relative motion *	
	Chapter 2: Newton's Law of Motion (4 contact hours and	
	4 self-study hours)	
	• Newton's law, force, inertial reference frame *	
	General properties of forces in mechanics	
	• Fundamental forces in nature, units and dimensions *	

•	Application of Newton's law of motion**
CI	hapter 3: Momentum and Angular Momentum (6 contact
ho	ours and 6 self-study hours)
•	Momentum, impulse, momentum theorem*
•	Conservation of momentum**
•	Collision
•	Angular momentum of a particle and conservation of
	angular momentum**
CI	hapter 4: Work and Energy (4 contact hours and 4 self-
stu	udy hours)
•	Work
•	Kinetic energy and law of kinetic energy**
•	Conservative force and potential energy**
•	Conservation of mechanical energy**
•	Conservation of energy
CI	hapter 5: Rotation of A Rigid Body (8 contact hours and
8 5	self-study hours)
•	Motion of rigid body
•	Torque, law of rotation, rotational inertia*
•	Application of the law of rotation **
•	Kinetic energy and work in rotational motion *
•	Angular momentum of a rigid body, conservation of
	angular momentum in rotation*
CI	hapter 6: Fundamentals of Special Relativity (8 contact
ho	ours and 6 self-study hours)
•	The relativity postulate in mechanics
•	The postulates of special relativity, Lorentz
	transformation**
•	Some consequences of the Lorentz transformation**
•	The Lorentz transformation of velocities *
•	The relativistic dynamic theory
	rt Two Thermodynamics
	hapter 7: The Kinetic Theory of Gases (6 contact hours
an	d 6 self-study hours)
•	Essential concept of the kinetic theory of gases *
•	State parameters, equilibrium state, ideal gas law *
•	Representation of pressure for ideal gas **
•	Average translational kinetic energy, temperature**
•	Equipartition theory of energy, internal energy*
•	Maxwell speed distribution**
•	Mean free path and average collision rate
	Boltzmann distribution
Cl	hapter 8: Fundamentals of Thermodynamics (6 contact

Oniversity of shanghai for science and Technology		
hc	ours and 6 self-study hours)	
•	Internal energy, heat and work *	
•	The first law of thermodynamics**	
•	Application of the first law of thermodynamics**	
•	The heat capacities of an ideal gas*	
•	Application of the first law to adiabatic processes**	
•	Cyclical processes, thermal efficiency, Carnot cycle,	
	reverse cycle *	
•	The second law of thermodynamics**	
•	Reversible and irreversible process	
•	Statistical meaning of the second law	
•	Entropy	
Pa	rt Three Electromagnetic theory	
	hapter 9: Electrostatic Field in Vacuum (8 contact hours	
	d 6 self-study hours)	
•	Electric charges, Coulomb's law*	
•	Electric field, electric field line and flux**	
•	Gauss' law**	
•	Electric potential**	
•	Equipotential surface and potential gradient*	
C	hapter 10: Conductors and Dielectrics in Electrostatic	
Fi	eld (8 contact hours and 6 self-study hours)	
•	Elecrostatic induction**	
•	Capacitance and dielectrics*	
•	Gauss' law in dielectric, electric displacement*	
•	Energy in electric field*	
Pa	art B. Experiment / practice teaching (16 contact	
ho	ours and 12 self-study hours)	
•	Methods and steps to produce basic knowledge of	
	physical experiment (2 contact hours and 2 self-study	
	hours); **	
•	The use and principle of oscilloscope. Guide students	
	to master frequency measurement by the pattern of Li	
	Saru and to learn how to use the oscilloscope	
	measurement signals with the same frequency phase	
	difference (2 contact hours and 2 self-study hours); **	
•	The adjustment and the use of Michelson	
	Interferometer. Guide students to Understand the basic	
	structure, the principle of optics Michelson	
	interferometer, learn adjustment method (2 contact	
	hours and 2 self-study hours); **	
•	Double bridge measuring low resistance. Guide	
	students to understand the significance and principle	

	of low resistance measurement method of double
	bridge four end of the lead wire, learn to use the
	double bridge measuring low resistance, resistivity
	and calculate the conductor (2 contact hours and 2
	self-study hours); *
	• Torsion pendulum method measuring moment of
	inertia. Guide students to determine moment of inertia
	and torsional spring constant of the object, verify the
	parallel axis theorem (2 contact hours and 2 self-study
	hours); *
	• Light intensity distribution and width measurement of
	single slit diffraction. Guide students to observe single
	slit diffraction phenomena, to deepen the
	understanding of the diffraction theory, measure using
	photoelectric element, master its distribution law (2
	contact hours and 2 self-study hours); *
	• Franck Hertz experiment. Guide students to learn the
	principle and method of knowing Franck - Hertz
	experiment, verify the existence of atomic energy
	level, the first excitation potential and determination
	of argon atoms, understand the method of computer
	data acquisition, data processing (2 contact hours and
	2 self-study hours);
	• Adjustment of the spectrometer. Guide students to
	understand the structure of spectrometer, learn to
	adjust the spectrometer and use the spectrometer to
	angle measuring accuracy (2 contact hours);
	• Optical lever measuring linear expansion coefficient
	of metal. Guide students to measure linear expansion
	coefficient of metal tube, study the application of light
	lever to measure the length of tiny change (2 contact
	hours).
Study and examination	Final score includes: usual performance (20%); experiment
requirements and forms of	(10%), final exam (closed-book written examination)
examination	(70%)
	Usual performance includes: assignment, attendance rate,
	and computer practice
	Experiment score includes: experiment report (50%); and
	experiment exam (50%)
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] Cheng Shouzhu, Jiang Zhiyong, General Physics,

University of Shanghai for Science a	and Technology
	Higher Education Press ,2006.12(sixth edition)
[2	2] WANG Xiaoping, College Physics Experiment (1st
	edision), Machinery Industry Press,2009
2.	Reference books
[1] Zhang Sanhui, College Physics, Tsinghua University
	Press,1999 (second edition)
[2	2] Ma Wenwei, Physics, Higher Education Press, 2006
	(fifth edition)
[3	GI Gu Zhengtian, Chen Jun, College Physics
	Synchronous Tutorship Review and Self-testing,
	China Machine Press, 2009
[4] Francis W.Sears, Mark W.Zemansky, College
	Physics, Addison-Wesley Publishing Company, 1991

	College Develop (2)		
College Physics (2)			
	Mathematics, Physics and Chemistry		
	College Physics (2)		
7 11	20000060		
Subtitle, if applicable			
	3 rd semester		
is taught			
-	Professor GU Zhengtian		
	Associate Professor CHEN Jun		
	Associate Professor Dr. TONG Yuanwei		
	Associate Professor Dr. YAO Lanfang		
	Associate Professor WANG Lijun		
	Lecturer YAN Feinan		
	Lecturer Dr. LIU Yuan		
	Lecturer HUANGFU Quansheng		
	Lecturer LIANG Liping		
	Lecturer NI Weixin		
	Lecturer XU Chunyan		
	Lecturer Dr. LI Yuqiong		
	Lecturer Dr. DING Yaqiong		
	Experimentalist ZHOU Qun		
	Experimentalist Tang Meng		
	Experimentalist Ma Shanshan		
	Experimentalist Cai Xiongxiang		
	Experimentalist Guo Li		
Language	Chinese		
Relation to curriculum	Fundamental course for engineering major students.		
	College Physics (1) and College Physics (2) forming		
	complete College Physics course. Physics is a science to		
	research the basic structure and the interaction between		
	matters. It also investigates the most basic and most		
	common form of movement and their mutual		
	transformations. The research strategy of physics is the		
	foundation of natural science and engineering technology.		
Type of teaching, contact hours	Target students: students of science and engineering related		
	programs		
	Type of teaching: theoretical teaching, experiment teaching		
	Contact hours: 80 hours		
	Of which,		
	Theoretical teaching: 64 hours		
	Experiment / practice teaching: 16 hours		
	Computer practice: 0 hour		

906	University	of Shanghai for Science and Techno	ology

University of Shanghai for Science and Technology		
Workload	Workload = 150 hours	
	Contact hours $= 80$ hours	
	Self-study hours $= 70$ hours	
Credit points	5.0	
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over 2/3 and performing required	
	experiments are allowed to take the exam.	
Recommended prerequisites	Calculus	
Module objectives/intended	Module objectives:	
learning outcomes	With emphasis on College Physics course, students will be	
/	familiar with basic ideas of physics methods, students will	
	gain a professional and improved ability to analyze and	
	solve physical problems.	
	Intended learning outcomes:	
	On successful learning of this course module, the student	
	should be able to demonstrate the following learning	
	outcomes:	
	• Knowledge: students are required to master the basic	
	concepts and principles in magnetism, vibration and	
	waves, wave optics and modern physics.	
	• Skills: Acquire the ability of abstract thinking.	
	Improve self-study ability. Acquire the ability to	
	analyze and solve problems. Capable of computing	
	and judging. Use mathematical tools to solve general	
	problems in physics, calculation and estimation are	
	included.	
	• Competences: Analyze engineering problems from a	
	viewpoint of physics, and solve problems using	
	knowledge and skills mentioned above.	
Content	Part A. Theoretical teaching (64 contact hours and 58	
	self-study hours)	
	Part Three Electromagnetic theory	
	Chapter 11 Magnetic Field of Steady Current (12 contact	
	hours and 12 self-study hours)	
	• Magnetic phenomena, Ampere's pypothesis*	
	• Magnetic field, Gauss'law in magnetic field**	
	• Boit-Savart law and its application**	
	• Ampere's law and its application**	
	• Motion of charged particles in magnetic field*	
	• Magnetic force on current-carrying conductors*	
	• Magnetic torque on a current loop*	
	Chapter 12 Magnetic Field in Media (4 contact hours and	
	2 self-study hours)	

1				
	University	of Changhai	for Science	and Technology
	University	/ UI SHAHSHAH	IOI SCIEIICE	

Classifications of media, magnetic permeability
• Micro theory of paramagnetism and diamagnetism
• Ampere's law in the magnetic medium and magnetic
intensity H*
• Ferromagnetism
Chapter 13 Electromagnetic Introduction (8 contact hours
and 8 self-study hours)
• Nonelectrostatic force, Electromotive force,
Faraday's law of induction
Motional electromotive force**
• Induced electric field*
• Self-induction and mutual-induction*
• Energy of the magnetic field**
• Displacement current
• Maxwell's equation*
Part Four Oscillation and waves
Chapter 14 Oscillation (6 contact hours and 6 self-study
hours)
• Simple harmonic motion (SHM) *
• Amplitude, period, frequency, phase
• The Energy of SHM**
Damped Vibration and Forced Vibration
Resonance
• Superposition of two parallel SHM**
• Superposition of two perpendicular SHM
Chapter 15 Waves (6 contact hours and 6 self-study hours)
• Formation and Propagation of mechanical wave
• Wave speed and elasticity of the medium
• Wave function of a plane SHW**
• Energy, energy flow, wave intensity
• Superposition principle of waves, interference of
waves, standing waves **
• Doppler effect
• Properties and energy of electromagnetic waves*
Part Five Wave optics
Chapter 16 Interference of Light (6 contact hours and 6
self-study hours)
• The coherence of light
Double slit interference**
Optical path and optical path difference
Interference by division of amplitude**
Michelson' interferometer
Chapter 17 Diffraction of Light (6 contact hours and 6

University of Shanghai for Scier	
	self-study hours)
	• Diffraction of light ,Huygens-Fresnel's principle*
	• Fraunhofer single slit diffraction **
	Diffraction Grating **
	Resolving power of optical instrument
	• X-ray diffraction
	Chapter 18 Polarization of Light (4 contact hours and 2
	self-study hours)
	• Nature light and polarized light, polarization of light,
	Malus law
	 Polarization by reflection**
	Part Six Fundamentals of modern physics
	Chapter 19 Fundamentals of Quantum Theory (12 contact
	hours and 10 self-study hours)
	• Thermal radiation and Plank's theory of radiation
	• Photoelectric effect and Einstein's quantum theory**
	 Compton effect*
	 Atomic spectra, Bohr model of hydrogen atom**
	• De Broglie's postulate and matter waves **
	• The uncertainty principle *
	• The wave function and Schrodinger equation
	Part B. Experiment / practice teaching (16 contact
	hours and 12 self-study hours)
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); **
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition,
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);**
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand the principle of low resistance significance and double
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand the principle of low resistance significance and double bridge measuring four end lead method, learn to use
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand the principle of low resistance significance and double bridge measuring four end lead method, learn to use the double bridge measuring low resistance, resistivity
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand the principle of low resistance significance and double bridge measuring four end lead method, learn to use the double bridge measuring low resistance, resistivity and calculate the conductor (2 contact hours and 2
	 hours and 12 self-study hours) Capacitance Tests. Guide students to understand the structure, working principle and method of using a ballistic galvanometer, learn to use DQ - 3 digital impulse current measuring capacitance (2 contact hours and 2 self-study hours); ** Optical Fiber Communication. Guide students to Understand the working principle of composition, optical fiber transmission system, learn and be familiar with the test methods of basic properties of photoelectric devices and main characteristics of semiconductor electro-optic, learn debugging technique of optical fiber transmission system (2 contact hours and 2 self-study hours);** Hall effect experiment. Guide students to understand the principle of low resistance significance and double bridge measuring four end lead method, learn to use the double bridge measuring low resistance, resistivity

ቋ

Shiversity of Shanghar for Seler	
	 measure sound velocity by means of resonance interference, and deepen the relevant resonance, vibration, synthesis, wave interference theory knowledge (2 contact hours and 2 self-study hours); * Measurement of H atoms Rh with spectrometer. Guide students to learn a precise determination of the optical wavelength method grating method, calculate H atom Rydberg constant (2 contact hours and 2 self-study hours); * Electron Work Function Experiment. Guide students to understand the basic rules of the thermal electron emission, use the Richardson linear method for the determination of electron escape potential of tungsten wire (2 contact hours and 2 self-study hours); * Millikan Oil-drop Experiment. Guide students to verify of the "quantum of charge", namely the electric quantity is not continuous change, determine charged amount of oil droplets, and calculate the electron charge value (2 contact hours); Photoemission Experiment. Guide students to understand the basic rules of the photoelectric effect, deepen the understanding of Einstein's theory of the photoelectron, verify the Einstein equation, measure Planck constant using photoelectric effect method (2 contact hours);
Study and examination requirements and forms of	Final score includes: usual performance (20%); experiment (10%), final exam (closed-book written examination)
examination	(70%)
	Usual performance includes: assignment, attendance rate,
	and computer practice
	Experiment score includes: experiment report (50%); and experiment exam (50%)
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] Cheng Shouzhu, Jiang Zhiyong, General Physics, Higher Education Press, 2006 12 (sixth adition)
	Higher Education Press ,2006.12 (sixth edition)[2] WANG Xiaoping, College Physics Experiment (1st
	edition), Machinery Industry Press,2009
	2. Reference books
	[3] Zhang Sanhui, College Physics, Tsinghua University
	Press, 1999.4 (second edition)
	[4] Ma Wenwei, Physics, Higher Education Press,

	2006.1(fifth edition)
[5]	Gu Zhengtian, Chen Jun, College Physics
	Synchronous Tutorship Review and Self-testing,
	China Machine Press, 2009
[6]	Francis W.Sears, Mark W.Zemansky, College
	Physics, Addison-Wesley Publishing Company, 1991
[7]	HAO Bangyuan, College Physics Experiment (1st
	edition), Southwest Jiao Tong University press,2010
[8]	LIU Jingwang, College Physics Experiment (2nd
	edition), Water conservancy and Hydropower Press,
	2010
[9]	Pisin Chen, Recent Advances and Cross-Century
	Outlooks in Physics: Interplay Between Theory and
	Experiment (1st edition), National University of
	Defense Technology press, 2000

Informatics

Information Technology

mormation recimology	
Competence field	Informatics
Module designation	Information Technology
Code, if applicable	12002970
Subtitle, if applicable	
Semester(s) in which the module	1 st semester
is taught	
Person responsible for the module	Associate Professor XIA Yun
Lecturer	Associate Professor XIA Yun
	Associate Professor ZANG Jinsong,
	Lecturer HUANG Chunmei
Language	Chinese
Relation to curriculum	Information Technology is one of the informatics courses
	for undergraduates of engineering related programs. This
	course includes the knowledge of image processing, video
	processing, process information based on the network, web
	design, etc. After finishing this course, students can master
	the skills of how to acquire information, process
	information, transmit information and use information
Type of teaching, contact hours	Target students: students of engineering related programs.
	Type of teaching: half of the time is for lectures, half for
	classroom exercises
	Contact hours: 32 hours
	Of which,
	Theoretical teaching: 16 hours
	Experiment / practice teaching: 16 hours
	Size of class: 60-80 students
Workload	Workload =60 hours
	Contact hours $= 32$ hours
	Self-study hours $= 28$ hours
Credit points	2.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	None
Module objectives/intended	Students will be familiar with the knowledge of
learning outcomes/	multimedia, computer network and web design, be able to
	process the image, video and Webpage, utilize them in their
	subsequent professional courses.
	• Knowledge: students are required to master the basic
	concepts and principles of information, understand the
	knowledge of acquisition and utilization in different

	fields.
	• Skills: Acquire the ability of image and video
	processing. Acquire the ability to process information
	based on the network. Acquire the ability to carry out
	a basic web design.
	• Competences: Analyze engineering problems from a
	viewpoint of infomation, and solve problems using
	knowledge and skills mentioned above.
Content	Part A. Theoretical teaching (16 contact hours and 14
	self-study hours)
	Chapter 1 Introduction: the new application of modern
	information technology (2 contact hours and 2 self-study
	hours)
	• Integration of information and industrialization
	 Intelligence technology*
	 Cloud computing**
	• Next generation internet*
	Chapter 2 Multimedia technology (6 contact hours and
	4 self-study hours)
	 Audio signal processing technology*
	• Image information processing technology**
	 Animation processing technology*
	• Video information processing technology*
	Chapter 3 Basis of computer network (2 contact hours
	and 2 self-study hours)
	• The basic concepts of computer network
	• LAN*
	 Local area networking*
	 Internet technology and application**
	Chapter 4 Web design (6 contact hours and 6 self-study
	hours)
	• Introduction to HTML and Web design software
	• The basic elements in the Web page: text, hyperlinks,
	multimedia, form*
	 Web design and publish**
	Part B. Experiment / practice teaching (16 contact
	hours and 14 self-study hours)
	• Foundation of multimedia processing: audio, image &
	animation ((8 contact hours and 6 self-study hours) *
	• Network applications (2 contact hours and 2 self-study
	hours) **
	• Web design (6 contact hours and 6 self-study hours)
	**

After-school exercises should be completed by students Study and examination independently after each class. requirements and forms of examination Usual performance accounts for 30%, consisted of assignments, mid-semester examination and attendance; final exam (closed book written examination) accounts for 70%. PPT courseware, multimedia computers, projectors, laser Media employed pens, blackboards, etc. Reading list Reference books [1] Xia Yun, Basic computer application (2nd Ed.), Publishing House of Electronics Industry, 2013. [2] Xia Yun, The application of computer experiment guidance (2nd Ed.), Publishing House of Electronics Industry, 2013

Introduction to Computer

ntroduction to Computer	
Competence field	Informatics
Module designation	Introduction to Computer
Code, if applicable	12003010
Subtitle, if applicable	
Semester(s) in which the module	2 nd semester
is taught	
Person responsible for the module	Associate Professor XIA Yun
Lecturer	Associate Professor XIA Yun
	Associate Professor ZANG Jinsong
	Lecturer LIU Lixia
Language	Chinese
Relation to curriculum	This course aims to train the students fully understand the
	professional knowledge, the latest development and
	application of the computer field. Through the studying of
	this course, the students have a basic understanding of the
	main computer in the future to learn the knowledge,
	construct follow-up courses. The basic framework of
	knowledge, for future study and master the computer
	professional knowledge, to lay the foundation for scientific
	research.
Type of teaching, contact hours	Target students: freshman of all programs.
	Type of teaching: most of the time is for lectures, the rest
	time for classroom exercises and discussion.
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 48 hours
	Experiment / practice teaching: 0 hour
	Size of class: 60-80 students
Workload	Workload = 90 hours
	Contact hours =48 hours
	Self-study hours = 42 hours
Credit points	
Credit points Requirements according to the	Self-study hours = 42 hours
-	Self-study hours = 42 hours 3.0
Requirements according to the	Self-study hours = 42 hours3.0Students with class attendance rate over 2/3 and assignment
Requirements according to the examination regulations	Self-study hours = 42 hours3.0Students with class attendance rate over 2/3 and assignmentcompletion rate over 2/3 are allowed to take the exam.
Requirements according to the examination regulations Recommended prerequisites	Self-study hours = 42 hours3.0Students with class attendance rate over 2/3 and assignment completion rate over 2/3 are allowed to take the exam.Information Technology
Requirements according to the examination regulationsRecommended prerequisitesModuleobjectives/intended	Self-study hours = 42 hours 3.0 Students with class attendance rate over 2/3 and assignment completion rate over 2/3 are allowed to take the exam. Information Technology • Knowledge: Master computer basic knowledge,
Requirements according to the examination regulationsRecommended prerequisitesModuleobjectives/intended	 Self-study hours = 42 hours 3.0 Students with class attendance rate over 2/3 and assignment completion rate over 2/3 are allowed to take the exam. Information Technology Knowledge: Master computer basic knowledge, understanding of computer principle of work and the
Requirements according to the examination regulations Recommended prerequisites Module objectives/intended	 Self-study hours = 42 hours 3.0 Students with class attendance rate over 2/3 and assignment completion rate over 2/3 are allowed to take the exam. Information Technology Knowledge: Master computer basic knowledge, understanding of computer principle of work and the information processing theory. Master general

	 the basic principle of the computer network. Understanding and knowledge of information retrieval technology and information security technology. Skills: The cultivation of students' ability of self- learning ability and acquire new knowledge, new technology of the computer, with the use of computer tools for word processing, data processing, information acquisition of three kinds of ability. Competences: The cultivation of students' a serious and responsible work attitude and meticulous work style; The cultivation of students' autonomous learning consciousness and the team cooperation spirit; Training the students consciousness and ability of innovation consciousness and information processing work.
Content	Part A. Theoretical teaching (48 contact hours, 42 self-
	study hours) Chapter 1: Basic knowledge of computer* (introductory
	content;6 contact hours and 3 self-study hours)
	Chapter 2: Experience with the application of Windows
	operating system* (Preliminary understanding;6 contact
	hours and 3 self-study hours)
	Chapter 3: To master the basic operation of word
	processing software** (key content;10 contact hours and
	10 self-study hours)
	Chapter 4: To master the basic operation of electronic form processing software Excel** (key content: 10 contact
	form processing software Excel** (key content; 10 contact hours and 10 self-study hours)
	Chapter 5: Learn how to use PowerPoint to make the
	presentation** (key content; 10 contact hours and 10 self-
	study hours)
	Chapter 6: Overview of computer security, the new
	technology of computer knowledge and Application*
	(introductory content; 6 contact hours and 6 self-study
	hours)
	Part B. Experiment / practice teaching: 0 hour.
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, mid-semester examination and attendance;
	final exam (closed book written examination) accounts for
	70%.

Media employed	PPT courseware, multimedia computers, projectors, laser	
	pens, blackboards, etc.	
Reading list	1. Recommended book	
	[1] Fundamentals of Computer Application	
	Tutorial(2011), East China Normal University press	
	[2] The application of computer experiment	
	guidance(2011), East China Normal University press	
	2. Reference books	
	[1] Norton, Introduction to Computer Science (Sixth	
	Edition), Tsinghua University Press	

rogram Design and Practice		
Competence field	Informatics	
Module designation	Program Design and Practice	
Code, if applicable	12002000	
Subtitle, if applicable		
Semester(s) in which the module	3 rd semester	
is taught		
Person responsible for the	Associate Professor XIA Yun	
module		
Lecturer	Associate Professor ZANG Jinsong,	
	Lecturer HUANG Xiaoyu,	
	Lecturer YANG Zan,	
	Lecturer CHENG Guoshu	
Language	Chinese	
Relation to curriculum	Program Design and Practice is one of the informatics	
	courses for all undergraduates of engineering majors. This	
	course includes sequence structure, program design, branch	
	structure design, cycle structure design, etc. The course	
	focuses on training students' programming thinking,	
	programming ability, engineering ability and innovative	
	ability and encourages students to use their language C to	
	solve specific problems.	
Type of teaching, contact hours	Target students: students of engineering related programs.	
	Type of teaching: almost 2/3 of the time is for lectures, and	
	some time is left for classroom do exercises	
	Contact hours: 48 hours	
	Of which,	
	Theoretical teaching: 32 hours	
	Experiment / practice teaching: 16 hours	
	Size of class: 60-80 students	
Workload	Workload =90 hours	
	Contact hours =48 hours	
	Self-study hours = 42 hours	
Credit points	3.0	
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over $2/3$ are allowed to take the exam.	
Recommended prerequisites	Information Technology; Introduction to Computer	
Module objectives/intended	Students should have familiarity with the language C, and	
learning outcomes/	they should master the major features and what most of the	
	language constructs are and be able to write small	
	programs.	
	• Knowledge: Understand the basic knowledge of	
	programming, some basic knowledge of data	

Program Design and Practice

	structure. and master the basic programming analysis
	methods, such as module method.
	• Skills: be able to analyze problem and solve it by
	computer programming; and be able to build a whole
	program using the module method.
	• Competences: be able to analyze basic engineering
	problems and solve them with programming methods,
	understand the concept, development and potential
	applications of numerical methods. Ability to learn to
	use a new software when needed.
Content	Part A. Theoretical teaching (32 contact hours and 26
	self-study hours)
	Chapter 1. Basic Knowledge for Programming Design
	(2 contact hours and 2 self-study hours)
	Program and Programming Language*
	 Structural Programming Design Method**
	• Introduction and representation of
	Algorithm*
	• Getting start
	Chapter 2. An Overview of C (6 contact hours and 4 self-
	study hours)
	• Basic structure of C program*
	• (Character set, identifiers, expressions, keywords,
	statements, functions)**
	• Data types (variable Name, Data Types and Sizes,
	Constants, Declarations)**
	• Operations(Arithmetic Operators, Relational and
	Logical Operators, Type Conversions, Increment
	and Decrement Operators **
	• Sequential Logic Structure and Selective
	structure**
	Chapter 3. Iteration Constructure (6 contact hours and 4
	self-study hours)
	• The basic concepts of loops*
	• The use of Loop, the comparison of three kinds of
	loops*
	• Nested loop**
	• Programming examples (output graphics,
	exhaustive algorithm)*
	Chapter 4. Combined data structure and file (6 contact
	hours and 6 self-study hours)
	• The basic concept of the array*
	• Pointer**

	 structure data type* file**
	• nie*** Chapter 5. Module and interface (6 contact hours and 6
	self-study hours)
	• C program structure, function definition**
	• Function call and data transfer between the
	functions**
	 Scope Rules and variable storage**
	• Recursive function calls*
	Chapter 6. Case study(6 contact hours and 4 self-study
	hours)
	• Transmission of structured data between
	functions*
	 basic algorithm practice*
	Part B. Experiment / practice teaching (16 contact
	hours and 16 self-study hours)
	• Environment of programming(2 contact hours and
	2 self-study hours)**
	• Sequential Logic Structure and Selective structure
	practice(2 contact hours and 2 self-study hours)**
	 Iterative programming(4 contact hours and 4 self- study hours)**
	• Data process(4 contact hours and 4 self-study hours)*
	 Module and algorithm practice(4 contact hours)
	and 4 self-study hours)*
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, mid-semester examination and attendance;
	final exam (closed book written examination) accounts for
	70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
1 - 2	pens, blackboards, etc.
Reading list	Reference books
	[1] "A First Book of ANSI C, (Fourth Edition)", By Gary
	J.Bronson
	[2] "A Book on C : Programming in C (Fourth Edition)",
	[2] "A Book on C : Programming in C (Fourth Edition)",By Al Kelley and Ira Pohl ,2004

Engineering Fundamentals

Fundamentals of Engineering Drawing

unuamentais or Engineering.	
Competence field	Engineering Fundamentals
Module designation	Fundamentals of Engineering Drawing
Code, if applicable	14001900
Subtitle, if applicable	
Semester(s) in which the module	1 st semester
is taught	
Person responsible for the module	Professor ZHONG Liangwei
Lecturer	Associate Professor QU Yuanshang
	Associate Professor ZHU Wenbo
	Lecturer CHEN Long
	Lecturer JING Lulu
Language	Chinese
Relation to curriculum	Fundamentals of Engineering Drawing is an engineering
	fundamental course of engineering related programs. This
	course focuses on the introduction of geometry projection
	principles and engineering drawing representation
	methods. At the same time, it can provide a primary
	introduction of the principles and national standards of
	mechanical drawings and the representation methods of
	engineering drawing, and enable students to acquire the
	capability of drawing engineering diagrams, and get broad
	professional fundamental knowledge, so as to lay the
	foundation for the study of further mechanical courses
	(such as Machine Design, Mechanical Engineering
	Drawing, etc).
Type of teaching, contact hours	Target students: freshmen of engineering related programs
	Type of teaching: most of the time is for lectures, and some
	time is for classroom discussions
	Contact hours: 64 hours
	Of which,
	Theoretical teaching: 64 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 0 hour
	Size of class: 60 students
Workload	Workload = 120 hours
	Contact hours $= 64$ hours
	Self-study hours = 56 hours
Credit points	4.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over 2/3 are allowed to take the exam.

University of Shanghai for Scier Recommended prerequisites	None
Module objectives/intended	
learning outcomes	Module objectives: Designers express their design ideas through
	engineering drawings, while manufacturers manufacture
/	products according to engineering drawings; therefore,
	engineering drawing is the common technical language for
	engineers. This course is an engineering fundamental professional course for engineering realted programs.
	 Knowledge: students are required to memorize the
	common rules of national drawing standards; grasp
	the basic principles of projection method, be able to
	correctly use various linear expression methods, and
	be skillful at drawing the projection of point, line,
	plane and body, master common expression methods
	of mechanical drawings, including basic views, partial
	views, oblique views, section views, cross-section
	views and partial enlarged drawings, etc., especially
	the in-depth learning of the drawing of various section
	views. Students are able to select appropriate
	expression methods and draw engineering drawings
	according to geometric structural features.
	• Skills: be able to draw solid three-view drawings or
	section views, etc. according to given geometric
	models or stereogram by using orthographic
	projection. On the contrary, be able to imagine solid
	structure according to given engineering drawing, and
	have certain imaginable thinking capability.
	• Competences: by studying the common expression
	methods of engineering drawings, students are
	expected to acquire certain imagination in 3D space
	and be able to make integrated application of three-
	views and section views to express objects, so as to
	lay the foundation for the study of follow-up
	professional courses and product design drawing.
	Good design and innovation capability is one of the
	necessary conditions required for enterprise talents.
Content	Part A. Theoretical teaching (64 contact hours and 56
	self-study hours)
	Introduction: Understand the nature, tasks and methods
	for learning of this course. (1 contact hour)
	Chapter 1: Basic Knowledge of Engineering Drawing
	(brief introduction; 8 contact hours and 6 self-study hours)
	• Drawing sheets, scale, lettering, line types,

/	University	y of Shangha	i for Science	and Tach	nology
	Universit	y ui shangha	I TOT SCIENCE	and rech	noiogy

dimensioning and other national drawing standards;
• Basic skills and knowledge of instrument-aided and
freehand drawing and dimensioning;
Geometric construction. *
Chapter 2: Projection of Point, Line, Plane and Solid (key
content; 20 contact hours and 20 self-study hours)
• Basic principles and methods of spatial geometric
elements expression by orthogonal projection method,
the projection features of spatial geometric elements
(point, line, plane); **
• Relative position projection features of spatial
geometric elements, and the graphical solution of the
parallel, intersect, cross and vertical issues, etc. of
geometric elements; *
• Seeking line length and the true graphic shape through
the method of replace plane, and carrying out
graphical problems of spatial geometric elements; *
• Orthogonal projection of planar solid and curved
surface solid; **
• Methods for drawing the intersection line of special
position plane and solid surface; **
• Methods for drawing the line of surface intersection of
two orthogonal rotary solids. **
Chapter 3: Composite Solids (combination of lectures and
exercises guidance; 15 contact hours and 14 self-study
hours)
• Formation and projection features of solid's three-
views; *
• Composite solid drawing, reading and dimensioning
using shape analysis method and line plane analysis
method. **
Chapter 4: Axonometric Projection (brief introduction; 6
contact hours and 4 self-study hours)
• Basic knowledge of axonometric projection, the
drawing methods for the isometric projection and
cabinet axonometric projection;
• Freehand drawing of simple solid axonometric
drawings. *
Chapter 5: General Principles of Representation of
Machine Parts (key content; 14 contact hours and 12 self-
study hours)
• Drawing methods for views, section views and cross-
section views: **

University of Shanghai for Science and Technology		
	• Other expression methods and application examples;	
	*	
	• Drawing composite solid by using ruler and	
	compasses as well as various expression methods. *	
	Part B. Experiment / practice teaching (0 hour)	
Study and examination	After-school exercises should be completed by students	
requirements and forms of	independently after each class.	
examination	Usual performance accounts for 30%, consisted of	
	assignments, mid-semester examination and attendance;	
	final exam (closed book written examination) accounts for	
	70%.	
Media employed	PPT courseware, multimedia computers, projectors, laser	
	pens, blackboards, etc.	
Reading list	1. Recommended book	
	[1] QIU Wenyan and QU Yuanshang, Mechanical Drawing	
	(2nd edition), Higher Education Press, 2009	
	2. Reference books	
	[1] LIU Chaoru, etc., Mechanical Drawing (5th edition),	
	Higher Education Press, 2012	
	[2] HE Mingxin and QIAN Keqiang, Mechanical Drawing	
	(5th edition), Higher Education Press, 2012	
	[3] WANG Chunhua, etc., Modern Engineering Graphics,	
	China Petrochemical Press, 2012	
	[4] Colin H Simmons etc. Manual of Engineering	
	Drawing(Second edition), Elsevier Newnes, 2004	

Engineering Fundamentals Competence field **Electrical Engineering and Electronics** Module designation 12002090 Code, if applicable Subtitle, if applicable Semester(s) in which the module 2nd semester is taught Person responsible for the module Associate Professor XIN Shangzhi Lecturer Associate Professor LIU Jian Associate Professor HOU Wen Language Chinese Relation to curriculum Electrical Engineering and Electronics is an engineering fundamental course for students of engineering related programs. This course includes two aspects, electrical and electronic technology, with the aim to train students to master basic theory knowledge and the skill of experiment of electrician and electronic technology, to grasp the basic theory, basic knowledge and basic skills of electronic technology, to understand the application and development situation of electronic technology, so as to lay the important foundation for the study of follow-up courses. Type of teaching, contact hours Target students: freshmen of engineering related programs Type of teaching: most of the time is for lectures, and some time is left for classroom discussions and explaining exercises Contact hours: 96 hours Of which, Theoretical teaching: 78 hours Experiment / practice teaching: 18 hours Computer practice: 0 hour Size of class: 80-100 students Workload Workload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours Credit points 6.0 Requirements according to the Assess comprehensively by these three aspects: the scores examination regulations of the usual experimental report, experimental operation and experimental attendance. Recommended prerequisites Calculus; College Physics Module objectives/intended Module objectives: Electrical Engineering and Electronics is an engineering learning outcomes/ fundamental course. ۲ Knowledge: Understand the potential of electrical

Electrical Engineering and Electronics

ሧ

	safety education and the test, in the DC circuit, and
	master the principle of superposition and Thevenin's
	theorem; understanding of RLC series resonant
	circuit and single tube amplification circuit; study the
	operational amplifier and gate circuits and
	combinational logic circuit, etc.
	• Skills: Be able to automatically access components
	and instruments, analysis or design experimental
	circuit; be able to independently connect wiring,
	reasonable wiring and exclude general fault
	according to the map; be able to use the theoretical
	knowledge to analyze and judge the experimental
	phenomena; be able to correctly record and process
	the experimental data, indicating the experimental
	results, giving the qualified experiment report.
	• Competences: Through the application of basic
	theories and analysis methods learnt from this course,
	students are expected to be able to independently
	analyze the electrical principle diagram and connect
	correct wiring, reasonable wiring, and independent
	ability to remove common faults. This course trains
	students connately analyzing the experimental
	phenomena, the ability of processing the
	experimental data.
Content	Part A. Theoretical teaching (78 contact hours and 66
	self-study hours)
	Chapter 1: Introduction (2 contact hours and 2 self-study
	hours)
	Chapter 2: The basic concepts and the basic laws of circuit
	(4 contact hours and 4 self-study hours)
	• Understand the basic concepts of circuit; *
	 Master Kirchhoff's law. **
	Chapter 3: Analysis the methods of circuit (6 contact hours
	and 6 self-study hours)
	• Master the circuit equivalent transform method and
	analysis method of linear circuit; **
	• Master the principle of superposition and
	Thevenin's theorem. **
	Chapter 4: Sinusoidal alternating circuit (8 contact hours
	and 6 self-study hours)
	• Master all representation methods of sinusoidal
	flow; **
	• Master the analysis and calculation of general AC

circuit. **
Chapter 5: Three-phase AC circuit (4 contact hours and 4
self-study hours)
• Understand the concept of symmetrical three-phase
power supply; *
• Master the calculation of symmetric three-phase
load circuit. **
Chapter 6: Transient analysis of circuit (4 contact hours
and 4 self-study hours)
• Understand the causes of the transition process of circuit; *
• Master the law of switching and the three elements
method to analysis of a first-order circuit. **
Chapter 7: Transformer and AC motor (4 contact hours
and 4 self-study hours)
 Master three transforming functions of the transformer; **
• Understand the mechanical characteristics and
calculation of asynchronous motor. *
Chapter8: Semi-conductor diode and transistor (6 contact
hours and 4 self-study hours)
• Understand the conductive properties of semi-
conductor and the structure of the diode and the transistor; *
• Understand the volt ampere characteristic of the transistor. *
Chapter 9: Basic amplifier circuit (10 contact hours and 8
self-study hours)
• Understand the working principle of the transistor amplifier; *
• Master the static and dynamic analysis of basic
amplifier. Understand the relationship between
distortion and the working point. **
Chapter 10: The integrated operational amplifier (8
contact hours and 6 self-study hours)
• Understand the basic composition of the operational
amplifier; master the analysis, calculation and
application of the arithmetic circuit composed of
operational amplifiers; *
• Understand the simple applications of comparator. *
Chapter 11: Gate circuit and combinational logic circuit
(10 contact hours and 8 self-study hours)
• Master the application method of logic algebra, the

	 logic function of gate circuit and analysis and design of combinational logic circuit. ** Chapter 12: The logical circuit of the trigger and logical circuit (12 contact hours and 10 self-study hours) Understand the basic law of the bistable R-S,J-K and D trigger; * Master the analysis methods of the registers and counters. **
	Part B. Experiment / practice teaching (18 contact
	hours and 18 self-study hours)
	 Safety education of electrical engineering experiments and experiment of potential measuring in DC circuits (2 contact hours and 2 self-study hours) * Experiment of Superposition Principle and Theorem (2 contact hours and 2 self)
	 Thevenin's Theorem (2 contact hours and 2 self-study hours) * Experiment of improving power factor and influence of frequency on capacitance and inductance (2 contact hours and 2 self-study hours) **
	 Experiment of RCL series resonant circuit (2 contact hours and 2 self-study hours) * Introduction of common electronic instrument (2 contact hours and 2 self-study hours) * Experiment of single transistor AC amplifier circuit (2 contact hours and 2 self-study hours) ** Experiment of operational amplifier (2 contact hours and 2 self-study hours) ** Experiment of gate circuit and combinational logic circuit (2 contact hours and 2 self-study hours) ** Experiment of trigger and counter (2 contact hours and 2 self-study hours) **
Study and examination requirements and forms of examination	After-school exercises should be completed by students independently after each class. Usual performance accounts for 30%, consisted of assignments, mid-semester examination and attendance; final exam (closed book written examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	 The specified books "Electrical and electronic technology" edited by

Shangzhi Xin, China metrology press, 2009 July
2. Reference books
[1] "Electrical Engineering" (volume 1) electrician
technology, (volume 2) electronic technology, sixth
edition, Zenghuang Qin, high Education Press, 2004
July
[2] "Circuit" fifth edition, edited by Guanyuan Qiu, high
Education Press,2006 May
[3] "The Foundation of Electronic Technology" analog
electronic part (fourth edition), edited by Huaguang
Kang, high Education Press, 1999 June
[4] "The Foundation of Electronic Technology" digital
electronic part (fourth edition), edited by Huaguang
Kang, high Education Press, 2000 June

Competence field Engineering Fundamentals Module designation Mechanics of Materials Code, if applicable 14000102 Subtitle, if applicable 2 nd semester Semester(s) in which the module 2 nd semester Person responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Lecturer Professor WENG Guohua Lecturer VI Huijie Lecturer JIAO Guyue Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course main analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under courses (such as Machine Design, Fundamentals or courses (such as Machine Design, Fundamentals or Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system or machine subject and provides basic theoretical an computational methods for follow-up courses, and son time is left for classroom discussions and explaining exercises Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: 96 hours Experiment / practice teaching: 9	Iechanics of Materials	
Module designation Mechanics of Materials Code, if applicable 14000102 Subtitle, if applicable 2 nd semester Semester(s) in which the module 2 nd semester Person responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Lecturer VI Huijie Lecturer JIAO Guyue Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course main analyzes rods, with focus on the introduction of the calculation of stability of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under suc deformations and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical an computational methods for students to study mechanic courses (such as Machine Design, Fundamentals or Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Taget students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and son time is left for classroom discussions and explainin exercises Contact hours: 96 hours Experiment / practice teaching: 0 hour Computer		Engineering Fundamentals
Code, if applicable 14000102 Subtitle, if applicable 2 nd semester Semester(s) in which the module Professor WANG Zhonghou Person responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course main analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analyzes rods, with focus on the introduction of this course also provides basic theoretical are computational methods for students to study mechanic: courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explaining exercises Conputer practice: 0 hour Size of class: 60-80 students Workload Workload = 180 hours Contact hours = 96 hours Sife-study hours = 84 hours	•	
Subtitle, if applicable 2 nd semester Semester(s) in which the module 2 nd semester Person responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Lecturer Professor WENG Guohua Lecturer YU Huijie Lecturer YU Huijie Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course main analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical and computational methods for students to study mechanic: courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic: Mechanics slointly constitute the basic mechanics system of marchine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explaining exercises Conputer practice: 0 hour Size of class: 60-80 students Workload Workload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours <td>-</td> <td></td>	-	
Semester(s) in which the module 2 ^{ad} semester is taught Professor WANG Zhonghou Person responsible for the module Professor WANG Zhonghou Lecturer Professor WENG Guohua Lecturer YU Huijie Lecturer YU Huijie Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course mainl analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod unde compression, and provides necessary mechanical analyzes and calculation methods for follow-up courses. In addition this course also provides basic theoretical and compression, and provides basic theoretical and compression, and provides basic theoretical and compression and belofing: most of the time is for lectures, and son time is left for classroom discussions and explaining exercises Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and son time is left for classroom discussions and explaining exercises Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice to hour Size of class: 60-80 students Workload Workload = 180 hours Self-study hours = 84 hours		14000102
is taught Prefesor responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Associate Professor WENG Guohua Lecturer YU Huijie Lecturer YU Huijie Lecturer YU Huijie Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course mainl analyzes rods, with focus on the introduction of th calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod unde compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical and courses (such as Machine Design, Fundamentals or Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explainin exercises Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Size of class: 60-80 students Workload Workload = 180 hours Contact hours: 96 hours Siel f-study hours = 84 hours		2nd compostor
Person responsible for the module Professor WANG Zhonghou Lecturer Professor WANG Zhonghou Associate Professor WENG Guohua Lecturer YU Huijie Lecturer JIAO Guyue Language Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course maind analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under computational methods for follow-up courses. In addition this course also provides basic theoretical analys and calculation methods for students to study mechanic courses (such as Machine Design, Fundamentals or Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explainin exercises Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Size of class: 60-80 students Workload Workload Workload = 180 hours Ceredit points 6.0		2 th semester
Lecturer Professor WANG Zhonghou Associate Professor WENG Guohua Lecturer YU Huijie Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course main analyzes rods, with focus on the introduction of th calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod unde compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical an computational methods for students to study mechanic: courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching, contact hours Contact hours: 96 hours Of which, Theoretical teaching: 06 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 students Workload Workload Workl	0	Drofoccor WANC 7hor show
Associate Professor WENG Guohua Lecturer YU Huijie Lecturer JIAO GuyueLanguageChineseRelation to curriculumMechanics of Materials is an engineering fundament course of engineering related programs. This course mainli analyzes rods, with focus on the introduction of tri calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analyse and calculation methods for follow-up courses. In addition this course also provides basic theoretical and computational methods for students to study mechanic courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic. Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses.Type of teaching, contact hoursTarget students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explaining exercises Contact hours: 96 hours Experiment / practice teaching: 0 hour Size of class: 60-80 studentsWorkloadWorkload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours	-	
Lecturer YU Huijie Lecturer JIAO GuyueLanguageChineseRelation to curriculumMechanics of Materials is an engineering fundament course of engineering related programs. This course mainl analyzes rods, with focus on the introduction of th calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical an computational methods for students to study mechanics courses (such as Machine Design, Fundamentals on Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses.Type of teaching, contact hoursTarget students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and son time is left for classroom discussions and explaining exercises Contact hours: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 studentsWorkloadWorkload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours	Lecturer	_
Lecturer JIAO GuyueLanguageChineseRelation to curriculumMechanics of Materials is an engineering fundament course of engineering related programs. This course mainl analyzes rods, with focus on the introduction of th calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion an bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical an computational methods for students to study mechanic courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses.Type of teaching, contact hoursTarget students: freshmen of engineering related program Type of teaching; most of the time is for lectures, and som time is left for classroom discussions and explaining excrises Contact hours: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 studentsWorkloadWorkload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours		
Language Chinese Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course maind analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under suc deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical and computational methods for students to study mechanic. courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching; contact hours Target students: freshmen of engineering related program Type of teaching: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 students Workload Workload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours		5
Relation to curriculum Mechanics of Materials is an engineering fundament course of engineering related programs. This course mainl analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under sue deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical and computational methods for students to study mechanic: courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic. Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses. Type of teaching, contact hours Target students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explainine exercises Contact hours: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 students Workload Workload = 180 hours Credit points 6.0	T	
course of engineering related programs. This course mainling analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under success deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analys and calculation methods for follow-up courses. In addition this course also provides basic theoretical and computational methods for students to study mechanic courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretic Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for further courses.Type of teaching, contact hoursTarget students: freshmen of engineering related program Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explaining exercises Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 studentsWorkloadWorkload = 180 hours Contact hours = 96 hours Self-study hours = 84 hours		
Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explaining exercisesContact hours: 96 hoursOf which, Theoretical teaching: 96 hoursExperiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 studentsWorkloadWorkload = 180 hours Self-study hours = 84 hoursCredit points6.0	Relation to curriculum	course of engineering related programs. This course mainly analyzes rods, with focus on the introduction of the calculation of strength and stiffness of a rod under such deformations as tension, compression, shear, torsion and bending, etc. and the calculation of stability of a rod under compression, and provides necessary mechanical analysis and calculation methods for follow-up courses. In addition, this course also provides basic theoretical and computational methods for students to study mechanical courses (such as Machine Design, Fundamentals of Engineering Materials, etc.). This course and Theoretical Mechanics jointly constitute the basic mechanics system of machine subject and provides basic theoretical support for
Contact hours = 96 hours Self-study hours = 84 hoursCredit points6.0		Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 students
	Workload	Contact hours = 96 hours
Requirements according to the Students with class attendance rate over 2/3 and assignment	Credit points	6.0
	Requirements according to the	Students with class attendance rate over 2/3 and assignment

University of Shanghai for Scier	
examination regulations	completion rate over $2/3$ are allowed to take the exam.
Recommended prerequisites	Calculus; College Physics
Module objectives/intended	Module objectives:
learning outcomes	Mechanics of Materials is an engineering fundamental
/	course. Through the study of this course, students are
	expected to understand the basic concepts and fundamental
	theories of rod strength, stiffness and stability, be skillful at
	rod checking and design calculation, and have certain
	analysis and problem-solving capabilities.
	• Knowledge: have the clear understanding of basic
	concepts and basic analysis methods of mechanics of
	materials, and be skillful at drawing the internal force
	diagram of a rod under such basic deformations as
	axial tension (or compression), torsion, bending, etc.,
	and calculating its stress, deformation, strength and
	stiffness; have mastery of plane stress state theory and
	four commonly used basic strength theories; be able
	to apply the above theories into the calculation of
	strength under such deformations as stretch bending,
	compression bending, unsymmetrical bending and
	bending torsion deformation; and be able to apply
	energy method to solve static indeterminacy
	problems.
	• Skills: be able to analyze the stress and deformation
	of members, and conduct checking of the members
	under various load in engineering according to
	strength, stiffness and stability theories; design
	economical and safe qualified members.
	• Competences: Through the application of basic
	theories and analysis methods of this course, students
	are expected to be able to establish basic mechanical
	concepts and solve relevant practical engineering
	problems. This course trains students scientific
	thinking and improve their comprehensive analysis
	and calculation skills.
Content	Part A. Theoretical teaching (96 contact hours and 84
	self-study hours)
	Chapter 1: Introduction (preliminary understanding; 4
	contact hours and 2 self-study hours)
	• Tasks of Mechanics of Materials; the relation between
	Mechanics of Materials and productive practice;
	• Concept of deformable body and basic assumptions;
	• Internal force, section method; stress and strain. *

,	5
	Chapter 2: Axial Tension and Compression (key content;
	8 contact hours and 6 self-study hours)
	• The internal force and stress on oblique section under
	axial tension and compression;
	• Strength conditions and the calculation of strength
	under axial tension and compression; **
	• Calculation of deformation under axial tension and
	compression; **
	• Static indeterminacy problems under tension and
	compression; *
	• Practical calculation of shearing and extrusion at joint
	position.
	Chapter 3: Torsion (key content; 8 contact hours and 8
	self-study hours)
	• Calculation of torsion couple, torque and torque
	diagram;
	• Stress and strength problem under circular shaft
	torsion; **
	• Deformation and stiffness problems under circular
	shaft torsion. **
	Chapter 4: Geometric Properties of Plane Figures
	(introductory content; 6 contact hours and 4 self-study
	hours)
	• Static moments and centroid;
	• Moment of inertia;
	• Parallel-axis formula. **
	Chapter 5: Internal Forces in Bending (key content; 8
	contact hours and 6 self-study hours)
	• Simplification of bending rod;
	• Shear force, bending moment, shear equation and
	bending moment equation; *
	• Shear diagram and bending moment diagram; **
	• Relationship among load intensity, shear force and
	bending moment. **
	Chapter 6: Bending Stress (key content; 8 contact hours
	and 8 self-study hours)
	• Calculation of normal stress and strength under
	bending; **
	• Calculation of shear stress and strength under
	bending; *
	• Measures to improve strength.
	Chapter 7: Bending Deformation (key content; 6 contact
	hours and 6 self-study hours)
L	· /

University of Shanghai for Science	and Technology
•	Bending deformation problems in engineering
	practice;
•	Approximate differential equation of deflection curve
	and the stiffness conditions;
•	Solve bending deformation via the use of integral
	method; *
•	Solve bending deformation via the use of
	superposition method; **
•	Measures to improve the bending stiffness.
0	Chapter 8: Stress State and Strength Theory (key content;
1	0 contact hours and 10 self-study hours)
•	The concept of stress state analysis and two-direction
	stress state and three-dimensional stress state
	instances;
•	Two-direction stress state analytical method and graphical method; **
	Three-dimensional stress and maximum shear stress;
	*
	Generalized Hooke's law;
•	
	common strength theories. *
	Chapter 9: Combined Deformation (key content; 8 contact
	ours and 8 self-study hours)
•	
•	
	deformation (including eccentric tension); **
•	Bending and torsional combined deformation. **
0	Chapter 10: Pressure Bar Stability (key content; 8 contact
	ours and 8 self-study hours)
•	Pressure bar stability concept and examples;
•	Critical force and critical stress of long and thin
	pressure bar; **
•	Critical force and critical stress of pressure bar under
	other constraints; **
•	Application range of Euler's formula, and calculation
	of medium-and-long rods and thick-and-short rods; *
	Pressure bar stability calculation; **
•	Measures to improve the stability of pressure bar.
0	Chapter 11: Dynamic Load (introductory content; 6
с	ontact hours and 4 self-study hours)
•	Inertial force issues;
•	Impact load;
•	Measures to improve the impact resistance of

University of Shanghai for Science and Technology	
	members.
	Chapter 12: Fatigue Strength of Members under
	Alternating Stress (introductory content; 8 contact hours
	and 6 self-study hours)
	• Cycle characteristics of alternating stress;
	• Endurance limit of materials under symmetric cycle
	loading;
	• Factors affecting endurance limit of members;
	• Strength conditions of members under symmetric
	cycle loading;
	• Measures to improve endurance limit of members.
	Chapter 13: Energy Method (key content; 8 contact hours
	and 8 self-study hours)
	• Rod deformation energy calculation;
	• Castigliano's theorem and mohrs theorem; **
	• Apply Castigliano's theorem (or mohrs theorem) to
	solve static indeterminacy problems. **
	Part B. Experiment / practice teaching (0 hour)
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, mid-semester examination and attendance;
	final exam (closed book written examination) accounts for
	70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] LIU Hongwen, Concise Mechanics of Materials (2nd
	edition), Beijing: Higher Education Press, 2008.
	2. Reference books
	[1] SHAN Zuhui, Mechanics of Materials I and II (3rd
	edition), Beijing: Higher Education Press, 2010.
	[2] SUN Xunfang, FANG Xiaoshu and LU Yaohong,
	Mechanics of Materials (3rd edition), Beijing: Higher
	Education Press, 2012.
	[3] HU Zengqiang, Mechanics of Materials Study Guide,
	Beijing: Higher Education Press, 2006
	[4] James M. Gere, Barry J. Goodno. Mechanics of
	Materials (8th edition). Nelson Engineering, 2012.

Competence field	Engineering Fundamentals
Module designation	Theoretical Mechanics
Code, if applicable	14001022
Subtitle, if applicable	14001022
Semester(s) in which the module	3 rd semester
is taught	5 somester
Person responsible for the module	Professor WANG Zhonghou
Lecturer	Associate Professor WENG Guohua
	Associate Professor LIU Jing
	Lecturer YU Huijie
	Lecturer ZHOU Qun
Language	Chinese
Relation to curriculum	Theoretical Mechanics is a fundamental course for studen of engineering related programs. This course main analyzes particles and rigid bodies, with focus on the introduction of the basic law and research methods of mechanical movement (including balance) of particles particle system and rigid bodies), and provides necessar mechanical analysis and calculation methods for follow-to courses. This course and Mechanics of Materials joint constitute the basic mechanics system of machine subject These two courses introduce to students the basis mechanics system, so as to lay the important foundation for the study of follow-up courses (such as Machine Design Fundamentals of Engineering Materials, etc.).
Type of teaching, contact hours	Target students: sophomores of engineering relate programs Type of teaching: most of the time is for lectures, and som time is left for classroom discussions and explainin exercises Contact hours: 96 hours Of which, Theoretical teaching: 96 hours Experiment / practice teaching: 0 hour Computer practice: 0 hour Size of class: 60-80 students
Workload	Workload = 180 hours Contact hours = 96 hours
	Self-study hours = 84 hours
Credit points	Self-study hours = 84 hours 6.0

University of Shanghai for Scier	ice and Technology
Recommended prerequisites	Calculus; College Physics
Module objectives/intended	Module objectives:
learning outcomes	Theoretical Mechanics is an engineering fundamental
/	course. The teaching objective of this course is to enable
	students to master the basic law and research methods of
	the mechanical motion of objects and the mechanical
	interaction between objects, so as to lay the foundation for
	the study of follow-up courses.
	• Knowledge: Understand the basic axioms of static,
	and master stress analysis methods of objects; be able
	to solve particle motion velocity and acceleration via
	the use of synthetic method; be able to solve
	kinematics problems of rigid system, solve particle
	velocity via the use of basic point method,
	instantaneous velocity center method and velocity
	projection method, and solve acceleration via the use
	of basic point method; grasp momentum theorem,
	moment of momentum theorem, theorem of kinetic
	energy and D'Alembert's principle.
	• Skills: be able to carry out system force analysis, and
	establish equilibrium equation to solve the unknown
	force of system; be able to solve the kinematics
	problems (including velocity and acceleration
	problems) of particles of rigid bodies; be able to
	establish the relation between rigid body system force
	and movement and solve it.
	• Competences: Through the application of basic
	theories and analysis methods learnt from this course,
	students are expected to be able to establish basic
	mechanical concepts and solve relevant practical
	engineering problems; this course trains students
	scientific thinking, comprehensive computational
	analysis and innovation capabilities.
Content	Part A. Theoretical teaching (96 contact hours and 84
	self-study hours)
	Introduction: Main Research Content and Methods of
	Theoretical Mechanics (Preliminary understanding; 2
	contact hours)
	Chapter 1: Basic Axioms of Static and Force Analysis of
	Objects (introduction of basic concepts; 4 contact hours
	and 4 self-study hours)
	• Get familiar with the nature of common constraints;
	• Be able to draw the force drawings of object system

and free-body. **
Chapter 2: Planar Concurrent Force System (key content;
4 contact hours and 4 self-study hours)
• Understand the synthesis result of concurrent force
system; *
• Master the equilibrium conditions and equilibrium
equations of concurrent force system. **
Chapter 3: Moment and Planar-couple Theory
(introductory content; 4 contact hours and 4 self-study
hours)
• Get familiar with the basic concepts and nature of
force, moment and couple;
• Be able to calculate force projection and force-shaft
moment; *
• Establish couple equilibrium equation. *
Chapter 4: Planar Arbitrary Force System (key content; 8
contact hours and 6 self-study hours)
• Grasp the simplified results of planar force system;
• Be able to calculate the principal vector and principal
moment of force system; *
• Apply equilibrium equations to solve the equilibrium
problems of object system. **
Chapter 5: Friction (introductory content; 6 contact hours
and 6 self-study hours)
• Get familiar with the concept of sliding friction;
• Be able to solve the equilibrium problems of the object
system with sliding friction; **
• Understand the concept of rolling friction.
Chapter 6: Space Force System and The Center of Gravity
(introductory content; 6 contact hours and 6 self-study
hours)
• Understand the simplified results of space force
system and equilibrium equation;
• Be able to calculate the center of gravity of simple
geometry and composite solid. *
Chapter 7: Kinematics of Particle (introductory content; 4
contact hours and 4 self-study hours)
• Understand vector method, method of direct
coordinate and natural coordinate method to describe
the motion of particles;
• Be able to solve the motion equation and trajectory
equation of a particle; *
• Be able to solve the velocity and acceleration of a

	particle. *
	Chapter 8: Basic Motion of Rigid Body (introductory
	content; 4 contact hours and 2 self-study hours)
	• Understand rigid translational and fixed axis rotation
	characteristics;
	• Be able to solve angular velocity and angular
	acceleration of axis rotating rigid body; *
	• Be able to solve the velocity and acceleration of
	particles in translational rigid body and fixed axis
	rotating rigid body. **
	Chapter 9: Synthetic Motion of A Particle (key content; 8
	contact hours and 6 self-study hours)
	• Grasp motion synthesis and decomposition methods;
	*
	• Be able to solve particle velocity via the use of
	velocity synthesis theorem; **
	• Be able to solve the acceleration of the particle with
	translational motion via the use of acceleration
	synthesis theorems; **
	• Understand the acceleration synthesis theorem with
	fixed axis rotating convected motion. *
	Chapter 10: Planar Motion of Rigid body (key content; 8
	contact hours and 8 self-study hours)
	• Understand the characteristics of planar motion of
	rigid body;
	• Be able to solve the velocity of a particle via the use
	of basic point method, instantaneous velocity center
	method and velocity projection method; **
	• Grasp the basic point method of solving acceleration.
	*
	Chapter 11: The Basic Law of Dynamics (introductory
	content; 4 contact hours and 4 self-study hours)
	• Be able to establish differential equation of particle
	motion;
	 Be able to solve two basic problems of dynamics. *
	Chapter 12: Momentum Theorem (8 contact hours and 8
	self-study hours):
	• Understand momentum theorem and theorem of
	motion of centre of mass in dynamics;
	 Be able to correctly apply momentum theorem to
	solve the dynamics problems of particle and particle
	system. *
	Chapter 13: Moment of Momentum Theorem (key
i	The second

University of Shanghai for Scier	nce and Technology
	content; 8 contact hours and 6 self-study hours)
	• Understand moment of momentum theorem in dynamics and the fixed axis rotating differential equation of rigid body;
	 Be able to correctly apply moment of momentum theorem to solve dynamics problems of particle and particle system. **
	Chapter 14: Theorem of Kinetic Energy (key content; 8
	 contact hours and 6 self-study hours) Understand theorem of kinetic energy and associated conservation theorem in dynamics:
	 conservation theorem in dynamics; Be able to correctly apply theorem of kinetic energy to solve dynamics problems of particle and particle
	system. ** Chapter 15: D' Alembert Principle (key content; 6 contact
	hours and 6 self-study hours)Understand D' Alembert principle;
	 Be able to simplify the inertial forces system of translational rigid body, fixed axis rotating rigid body
	 and plane motion rigid body; ** Be able to apply D' Alembert principle to solve
	dynamics problems. * Chapter 16: Principle of Virtual Displacement
	(introductory content; 4 contact hours and 4 self-study
	 hours) Understand the concepts of virtual displacement and ideal constraint;
	 Be able to apply principle of virtual displacement to solve constraint reaction.
	Part B. Experiment / practice teaching (0 hour)
Study and examination requirements and forms of	After-school exercises should be completed by students independently after each class.
examination	Usual performance accounts for 30%, consisted of assignments, mid-semester examination and attendance; final exam (closed book written examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
Reading list	pens, blackboards, etc. 1. Recommended book
	 [1] HAO Tongsheng, Theoretical Mechanics (3rd edition), Beijing: Higher Education Press, 2003 2. Deference backs
	2. Reference books

University of Shanghai for Scien	ce and Technology
	Mechanics, Harbin Institute of Technology,
	Theoretical Mechanics (7th edition), Beijing: Higher
	Education Press, 2009
	[2] Teaching and Research Department of Fundamental
	Mechanics, School of Aeronautics and Astronautics
	and Mechanics, Tongji University, Theoretical
	Mechanics (2nd edition), Shanghai: Tongji University
	Press, 2012
	[3] JING Rongchun, Theoretical Mechanics Counseling
	and Problem Solutions, Beijing: Tsinghua University
	Press, 2010
	[4] Carl Jenness Coe. Theoretical Mechanics: a vectorial
	treatment. The Macmillan Company. 2008

Competence field	Engineering Fundamentals
Module designation	Fundamentals of Engineering Materials
Code, if applicable	14001930
Subtitle, if applicable	
Semester(s) in which the module	3 rd semester
is taught	
Person responsible for the module	Professor WANG Shuwen
Lecturer	Professor WANG Yan
	Lecturer XIONG Min
	Lecturer ZHOU Jing
Language	Chinese
Relation to curriculum	Fundamentals of Engineering Materials is a fundamenta
	course for engineering related programs. This course focuse
	on acquainting students with the fundamental theories o
	metal science and heat treatment and the fundamenta
	knowledge of materials engineering, as well as enabling
	students to understand the composition, microstructure
	properties and uses of commonly used metal materials, and
	the relationship between heat treatment processes. Befor
	taking this course, students should have the basic knowledg
	-
	of Mechanics of Materials. This course can help student
	understand heat treatment processes and application durin
	Metalworking Practice. Through the study of this course
	students are expected to be able to reasonably selec
	mechanical engineering materials, correctly arrange hea
	treatment process methods of materials and properly develo
	the heat treatment process route for parts in further courses
Type of teaching, contact hours	Target students: sophomores of engineering relate
	programs
	Type of teaching: Most of the time is for lectures, and som
	time is left for classroom discussions and explainin
	exercises
	Contact hours: 64 hours
	Of which,
	Theoretical teaching: 56 hours
	Experiment / practice teaching: 8 hours
	Computer practice: 0 hour
	Size of class: 80-100 students
Workload	Workload = 120 hours
	Contact hours = 64 hours
	Self-study hours = 56 hours
	4.0

Fundamentals of Engineering Materials

University of Shanghai for Scien		
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over 2/3, who have completed required	
	experiments, are allowed to take the exam.	
Recommended prerequisites	College Physics; Mechanics of Materials	
Module objectives/intended	Module objectives:	
learning outcomes	This course is an engineering fundamental course that	
/	introduces the composition, organization, performance and	
	process technology of engineering materials (mainly metal	
	materials). The purpose of this course is to enable students	
	to understand and master the basic knowledge of engineering	
	materials, so as to lay professional foundation for follow-up	
	courses.	
	• Knowledge: students are required to be familiar with	
	the main mechanical performance indicators of material	
	and their testing principles; master the basic theories of	
	microstructure, crystallization process, Binary Alloy	
	Phase Diagram (focus on iron-carbon alloy phase	
	diagram), plastic deformation and recrystallization of	
	materials; master the basic principles and processes of	
	heat treatment of steel materials; grasp the role of	
	specific heat treatment process in parts machining;	
	master the composition, microstructure, properties and	
	uses of common carbon steel and alloy steel.	
	• Skills: be able to select materials for specific parts,	
	correctly select heat treatment process methods, and	
	reasonably arrange heat treatment process route.	
	• Competences: be able to make integrated analysis from	
	many angles (including materials mechanical	
	properties, physical properties, chemical properties and	
	economy, etc.) according to the specific requirements	
	on parts, select appropriate materials for designed	
	product, and reasonably arrange heat treatment process	
	route, so as to acquire the capability of solving practical	
	engineering problems.	
Content	Part A. Theoretical teaching (56 contact hours and 46	
	self-study hours)	
	Introduction: Introduction on the objectives, tasks and	
	research objects of this course. (4 contact hours)	
	Chapter 1: Properties of Materials (6 contact hours and 4	
	self-study hours)	
	• Master the mechanical properties of materials,	
	understand the test methods and corresponding property	
	indicators; *	

 University of Shanghai for Science 	e and Technology
	• Understand the physical and chemical property indicators of materials:
	indicators of materials;
	• Understand the process properties of materials.
	Chapter 2: Structure of Materials (8 contact hours and 8
	self-study hours)
	• Understand the basic concept of crystal structure;
	• Focus on three crystal structures and characteristics of
	common metal; **
	• Master the crystal structure defects of actual metal; *
	Master alloy and crystal structural characteristics; *
	• Master the concepts of phase and solid solution
	strengthening. *
	Chapter 3: Materials Solidification (14 contact hours and 10
	self-study hours)
	• Master the concept of degree of supercooling; *
	• Master the crystallization process of pure metals and the
	volume changes caused by allotropy transformations; *
	• Master the application, distinction phase and
	microstructure concepts of Binary Isomorphous
	Diagram, Binary Eutectic Phase Diagram, Binary
	Eutectoid Phase Diagram and lever law; **
	• Master iron-carbon alloy phase diagram and the
	crystallization process of typical iron-carbon alloy, and
	be able to make phase diagram analysis; **
	• Master the concept of refined crystalline strengthening
	and the methods of grain refinement; *
	 Understand the characteristics of casting ingot
	microstructure and its control methods.
	Chapter 4: Metal Plastic Deformation and Recrystallization
	(6 contact hours and 6 self-study hours)
	 Understand metal plastic deformation and its essence;
	 Master the differences between cold machining and hot
	machining, the work hardening of cold-machining
	metal and its property changes during heating. *
	Chapter 5: Steel Heat Treatment (10 contact hours and 10
	self-study hours)
	• Understand the classification and roles of heat treatment
	processes;
	• Focus on cooling c curves and unbalanced
	microstructure of steel; *
	• Focus on annealing, normalizing, quenching, tempering
	and surface heat treatment processes and applications.
	*

	Chapter 6: Industrial Steel (8 contact hours and 8 self-study
	hours)
	• Understand the classification and grades of steel;
	• Get familiar with the role of alloying elements in steel;
	*
	• Focus on the grades, process methods and uses of all
	kinds of alloy steel. **
	Part B. Experiment / practice teaching (8 contact hour
	and 10 self-study hour)
	Experiment 1: Metal Hardness Test (2 contact hour and 2
	self-study hour)
	• Understand the composition and uses of Brinell
	hardness tester and Rockwell hardness tester;
	• Master Brinell hardness and Rockwell hardness
	measurement methods. *
	Experiment 2: Metal Impact Test (2 contact hour and 4 self-
	study hour)
	• Understand the main composition and operation
	methods of impact tester;
	• Preliminarily master the testing methods of toughness
	of metallic materials; *
	• Preliminarily establish the relation between carbon
	content of carbon steel and impact toughness. *
	Experiment 3: Carbon Steel Heat Treatment and Unbalanced
	Microstructure Observation (4 contact hours and 4 self-study
	hours)
	• Design and develop the heat treatment processes of
	carbon steel with different carbon content, and master
	the basic operations of steel heat treatment; *
	• Analyze the impact of cooling speed and tempering
	temperature on microstructure and hardness of carbon
	steel during its heat treatment, and analyze the impact
	of carbon content on the hardness after quenching;
	• Observe the microstructure of carbon steel after
	common heat treatment and identify the features of its
	typical microstructure;
	• Deepen the understanding of the relations among
	carbon steel composition, heat treatment process and its
	microstructure and properties. **
Study and examination	Usual performance accounts for 30%, consisted of
requirements and forms of	assignments and attendance; final exam (closed book written
examination	examination) accounts for 70%.
Media employed	PPT courseware, multimedia computers, projectors, laser

	pens, blackboards, etc.	
Reading list	1. Recommended book	
	[1] YU Yongsi, Mechanical Engineering Materials (9th	
	edition), Dalian University of Technology Press, 2014	
	2. Reference books	
	[1] ZHU Zhangjiao, Materials Engineering, Tsinghua	
	University Press, 2001	
	[2] William D. C. & David G. R.Material Science and	
	Engineering(9th International student edition), New	
	York: John Wiley & Sons, 2014	
	[3] HU Gengxiang, Fundamentals of Materials Science	
	(3rd edition), Shanghai Jiaotong University Press, 2010	
	3. Experiment / computer practice instruction books	
	[1] Self-designed teaching materials	
	4. Other	
	[1] PPT assisted courseware (self-designed)	
	[2] Problem sets (self-designed)	

Competence field	Engineering Fundamentals	
Module designation	Mechanical Engineering Drawing	
Code, if applicable	14001920	
Subtitle, if applicable		
Semester(s) in which the module	4 th semester	
is taught		
Person responsible for the module	Professor DING Xiaohong	
Lecturer	Associate Professor SHEN Jingfeng	
	Associate Professor HUANG Yiqing	
	Associate Professor QIAN Wei	
	Lecturer WANG Xinhua	
Language	Chinese	
Relation to curriculum	This course focuses on introducing the basic principles of commonly used mechanical mechanisms and the design methods of common mechanical parts. Recommended prerequisites closely related to this course are Fundamentals of Engineering Drawing, Theoretical Mechanics, and Mechanics of Materials, which provide drawing and mechanics foundation. Through the study of this course, students are expected to master the basic principles of commonly used mechanisms and the methods of calculation and selection of common parts, master the methods of structural design of mechanical drive system and other systems as well as related parts, and learn the principles of selection of standard parts. Innovative design practice project of this course is designed to strengthen students' application of the knowledge learnt, and train students' innovative mechanical thinking and innovation sense, so as to enable students to acquire innovation capability and actual product design capability as well as the theoretical	
Type of teaching, contact hours	basics of machine design. Target students: sophomores of engineering related	
,	programs Type of teaching: most of the time is for lectures, and some time is left for classroom discussions and explaining exercises Contact hours: 96 hours Of which, Theoretical teaching: 78 hours Experiment / practice teaching: 18 hour Computer practice: 0 hour	

Mechanical Engineering Drawing

<u>`</u>				
800				
	Inivoraity	of Changhai f	or Science and	Tachnalagy
	University	OF MANYDALL	or x ience and	rechnology

University of Shanghai for Science and Technology		
Workload	Workload = 180 hours	
	Contact hours = 96 hours	
	Self-study hours = 84 hours	
Credit points	6.0	
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over 2/3 are allowed to take the exam.	
Recommended prerequisites	Fundamentals of Engineering Drawing; Theoretical	
	Mechanics; Mechanics of Materials	
Module objectives/intended	Module objectives:	
learning outcomes	The purpose of this course is to enable students to master the	
/	basic principles of commonly used mechanical mechanisms	
	and the design methods of common mechanical parts,	
	preliminarily understand mechanical working principles,	
	and master the design process and methods of common parts	
	and mechanical products.	
	• Knowledge: get familiar with the working principles	
	of commonly used mechanisms, and be able to	
	correctly draw mechanism kinematics sketch; master	
	the calculation methods of planar mechanism freedom;	
	be familiar with the design and calculation of common	
	parts; grasp the methods of kinematics and dynamics	
	analysis of planar mechanisms; and master the use of	
	basic design manual and the selection of standard parts.	
	• Skills: enable students to be able to correctly analyze	
	the motion characteristics of planar mechanisms; make	
	reasonable selection of mechanisms according to	
	mechanical product working requirements; acquire the	
	capability of designing general parts; master the	
	knowledge about mechanical transmission and parts	
	structure design in practical engineering field.	
	• Competences: students are expected to be able to	
	correctly design general mechanical parts and	
	transmission mechanisms, and acquire good	
	comprehensive design and innovation capability, so as	
	to lay a solid foundation for follow-up study of	
	engineering courses.	
Content	Part A. Theoretical teaching (78 contact hours and 66	
	self-study hours)	
	Introduction: understand the nature, tasks and methods for	
	learning of this course, and master the strength calculation	
	criteria of mechanical parts. (2 contact hours and 2 self-	
	study hours)	
	Chapter 1: Kinematics Sketch of Planar Mechanism (to be	
1	compose at remembers breten of i fundi freenumbin (10 be	

highlighted; 4 contact hours and 2 self-study hours)
• Introduction of kinematics pair concept;
• Kinematics sketch of planar mechanism;*
• Conditions for definite motion of planar
mechanism.**
Chapter 2: Planar Linkage Mechanism Design (key
content; 8 contact hours and 4 self-study hours)
• Features of hinged four-bar linkage;*
• Evolution of hinged four-bar linkage;
• Design (graphical method) of planar four-bar
linkage;**
• Projection drawing of planar stereoscopic and
curved solid;
• Design (analytical method) of planar four-bar
linkage.
Chapter 3: Cam Mechanism Design (combination of
lectures and exercises guidance; 6 contact hours and 4 self-
study hours)
• Cam mechanism application and classification;
• Law of motion of follower;**
• Design of disk-shaped cam profile;
 Precautions for cam mechanism design;*
• Commonly used cam materials and structural
design.
Chapter 4: Intermittent Mechanism Design (brief
introduction, 4 contact hours and 4 self-study hours)
• Intermittent mechanism characteristics and
classification;
• Ratchet mechanism design;
• Geneva mechanism design;
• Incomplete gear mechanism design.
Chapter 5 : Gear Drive Design (key content; 8 contact hours
and 8 self-study hours)
 Basic law of gearing; The formation and characteristics of involutes
• The formation and characteristics of involutes
profile;*Fundamental dimensions calculation of involutes
• Fundamental dimensions calculation of involutes profile;*
 Proper gearing conditions and transmission
continuity conditions of straight spur gear;**
 Transmission and design features of helical-spur
gear;
 Failure modes and design guidelines of gear drive;

• Strength calculation of gear drive;**
• Lubrication and efficiency of gear drive;
• Structural design of gear drive.
Chapter 6: Worm Transmission Design (combination of
introduction and explaining exercises; 4 contact hours and 4
self-study hours)
• Characteristics and application of worm
transmission;
• Selection and calculation of basic worm drive
parameters;*
• Stress analysis and strength calculation of worm
transmission;
• Efficiency and heat balance calculation of worm
transmission.
Chapter 7: Gear Train (key content; 6 contact hours and 6
self-study hours)
• Characteristics and classification of gear train;
• Transmission ratio calculation of fixed axis gear
train;**
• Transmission ratio calculation of epicyclical gear
train;**
• Transmission ratio calculation of compound gear
train and function of gear train.*
Chapter 8 : Belt Drive and Chain Drive Design (key content;
6 contact hours and 6 self-study hours)
• Features and application of belt drive and chain
drive;
• Design and calculation of belt drive;**
• Design and calculation of chain drive;**
• Tensioning and maintenance of belt drive;
• Lubrication and layout of chain drive.
Chapter 9: Threaded Connection Design (combination of
introduction and explaining exercises; 8 contact hours and 6
self-study hours)
• Basic types of threaded connections;
• Pre-tensioning and locking of threaded
connection;*
 Strength calculation of threaded connection;** Structural design of threaded connection
• Structural design of threaded connection.
Chapter 10 : Key, Spline, Pin and Profile Connections
Design (combination of introduction and explaining exercises: 4 contact hours and 4 self study hours)
exercises; 4 contact hours and 4 self-study hours)
 Features and application of key connection;

ersity of Shanghai for Science an	a rechnology
	• Spline connection;*
	• Pin connection;
	• Profile connection.
Cha	pter 11: Riveting, Welding and Bonding Design
(con	abination of introduction and explaining exercises; 6
cont	act hours and 6 self-study hours)
	• Features and application of riveting;
	• Design and calculation of riveting;
	• Design and calculation of welding and bonding.*
Cha	pter 12: Axis Design (key content; 6 contact hours and
4 sel	f-study hours)
	• Features and application of axis;
	• Structural design of axis;**
	• Strength calculation of axis;*
	• Design examples OF axis.
Cha	pter 13: Bearing Design (combination of introduction
and	explaining exercises; 4 contact hours and 4 self-study
hour	s)
	• Characteristics and application of bearings;
	• Design and calculation of sliding bearing ;
	• Design and calculation of rolling bearing;**
	• Design of bearing device.
Cha	pter 14: Couplers, Clutches and Brakes (combination
of in	troduction and explaining exercises; 2 contact hours and
2 sel	f-study hours)
	• Characteristics and application of coupler;
	• Design and selection of coupler;
	• Design of clutch and brake.
Part	B. Experiment / practice teaching (18 contact hours
and	18 self-study hours)
	• The cognitive experiment of mechanism
	and composition (2 contact hours and 2 self-
	study hours);*
	• The drawing experiment of mechanism
	motion diagram(2 contact hours and 2 self-study
	hours);**
	• The parameters determination experiment
	of the involute cylindrical gear(2 contact hours
	and 2 self-study hours);**
	• The generating experiment of involute
	gear(2 contact hours and 2 self-study hours);**
	• The experiment of belt transmission (2
	contact hours and 2 self-study hours);**
•	

University of Shanghai for Scie	nce and Technology
	• The testing experiment of gear transmission
	efficiency (2 contact hours and 2 self-study
	hours);*
	• The liquid dynamic pressure test
	experiment of bearing(3 contact hours and 3
	self-study hours);*
	• The experiment of shafting structure
	assembly and analysis(3 contact hours and 3
	self-study hours);*
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, mid-semester examination and attendance;
	final exam (closed book written examination) accounts for
	70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] WANG Xinhua, Fundamentals of Machine Design (1st
	edition), Chemical Industry Press, 2010
	2. Reference books
	[1] YANG Kezhen, Machine Design (5th edition), Higher
	Education Press, 2006
	[2] ZOU Huijun, Machine Principles (2nd edition), Higher
	Education Press, 2006
	[3] Robert L. MottMachine Elements in Machine design
	(Fourth Edition) Prentice-Hall UA, ed2003

Engineering Thermodynamics	
Competence field	Engineering Fundamentals
Module designation	Engineering Thermodynamics
Code, if applicable	11000230
	11000230
Subtitle, if applicable Semester(s) in which the module	4 th Semester
is taught	4 Semester
Person responsible for the module	DestasserIIIins
Person responsible for the module	Professor LI Ling
Lecturer	Professor LI Ling
	Professor LU Mei
	Professor SHAN Yanguang
	Associate Professor XU Hongtao
	Associate Professor JIA Zhihai
	Associate Professor HU Zhuohuan
	Associate Professor Lu Wei
	Lecturer WANG Zhiyun
	Lecturer YAN Weigang
Language	Chinese / English
Relation to curriculum	Engineering Thermodynamics is a basic course required for
	undergraduates of energy and power engineering related
	programs. With a focus on the transformation rules between
	thermal energy and other types of energy, the course can help
	students for the further study of Heat Transfer. Engineering
	Thermodynamics can serve as the foundation for engineering
	application courses, such as Process Principle and
	Equipment, Design of Process Equipment, Process Fluid
	Machinery, Manufacturing Technology of Thermal Power
	Machniery, and Thermal Engineering and Thermal Power
	Plants, and elective courses such as Chemical Reaction
	Engineering, Chemical Process Technique, Process Analysis
	and Integration, Solar Power Generation and Thermal
	Utilization and Combined Cycle System. This course is a
	link between basic courses and specialized courses and lays
	a foundation for Internship and Bachelor Thesis.
Type of teaching, contact hours	Target students: sophomores of energy and power
	engineering related programs.
	Type of teaching: theoretical teaching, classroom practice,
	computer practice, experiment
	Contact hours: 96 hours
	Of which,
	Theoretical teaching: 62 hours
1	Classroom practice: 8 hours

	Contact hours $=$ 96 hours
	Self-study hours = 84 hours 6.0
Credit points Requirements according to the	Only students with class attendance rate over 2/3, assignment
1 0	completion rate over $2/3$, computer practice attendance more
examination regulations	
	than twice and completed required teaching experiments are allowed to take the exam.
Deserve and a group quicites	
Recommended prerequisites	Calculus; College Physics; Program Design and Practice
Module objectives/intended	Module objectives:
learning outcomes	With a focus on the transformation rules between thermal
	energy and other types of energy, Engineering
	Thermodynamics is a basic course for energy and power
	engineering related programs. It not only offers basic
	theoretical knowledge for study of specialized courses, but
	also lays a foundation for work in energy application and
	engineering equipment design. The objectives of this course
	is:
	• Knowledge: Master basic concepts and rules of
	Engineering Thermodynamics; analyze thermodynamic
	process and thermodynamic cycle and solve related
	problems by using the basic equations of
	thermodynamics and thermodynamic graphs with
	common working substances.
	common working substances.Skills: Acquire basis knowledge of thermal energy and
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate.
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future
	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future work by using above-mentioned knowledge and skills.
Content	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future work by using above-mentioned knowledge and skills. Part A. Theoretical teaching (62 contact hours; 64 self-
Content	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future work by using above-mentioned knowledge and skills. Part A. Theoretical teaching (62 contact hours; 64 self-study hours)
Content	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future work by using above-mentioned knowledge and skills. Part A. Theoretical teaching (62 contact hours; 64 self-study hours) Chapter 1 Basic Concepts (4 contact hours; 4 self-study
Content	 common working substances. Skills: Acquire basis knowledge of thermal energy and the conversion rules of other types of energy required for specialized courses; understand basic principles and main methods for improving energy utilization rate. Competences: Improve students abilities in thinking and practice; enhance students comprehensive competences and abilities in analyzing and solving problems; help students cultivate abilities in solving practical problems occurring in further study and future work by using above-mentioned knowledge and skills. Part A. Theoretical teaching (62 contact hours; 64 self-study hours)

•	State and equilibrium state, state parameter and its
	characteristics;**
•	Parametric coordinates; *
•	Thermodynamic processes and quasi static process,
	thermodynamic cycle. *
Ch	apter 2 First Law of Thermodynamics (6 contact hours;
8 s	elf-study hours)
•	Nature of first law of thermodynamics;*
•	Storage energy, work and heat;*
•	Thermodynamic energy;*
•	Analysis formula of first law of thermodynamics (close
	system) ;**
•	Application of first law of thermodynamics in opening
	system, steady flow energy equation, enthalpy,
	technical work, energy equation application. **
Ch	apter 3 Gas and Steam Properties (4 contact hours; 4 self-
stu	dy hours)
•	State equation of ideal gas and gas constant; *
•	Heat capacity of ideal gas, thermodynamic energy of
	ideal gas;**
•	Enthalpy and entropy and their calculation; steam
	properties;*
•	Steam chart and its application. **
Ch	apter 4 Basic Thermodynamic Process of Gas and
Ste	eam (6 contact hours; 6 self-study hours)
•	Objectives and general methods for thermal process
	analysis;**
•	Constant volume, constant pressure, constant
	temperature and adiabatic process of ideal gas;
	polytropic process and polytropic index; **
•	Comprehensive analysis of the thermodynamic process
	of ideal gas.*
•	Basic thermodynamic process of steam*.
Ch	apter 5 Second Law of Thermodynamics (8 contact
ho	urs; 8 self-study hours)
•	Process directivity, reversible and irreversible process,
	nature and expression of second law of
	thermodynamics;**
•	Carnot cycle and Carnot theorem;*
•	Thermodynamic scale, entropy derivation;**
•	Principle of entropy increase for isolated system; **
•	Entropy equation, entropy flow and entropy production,
	work capacity loss.*

Chapter 6 Properties of Actual Gas (4 contact hours; 4 self-
study hours)
• Properties of actual gas, Van Derwal equation; *
• State comparison equation, general compression factor
graph.*
Chapter 7 Gas and Steam Flow (6 contact hours; 6 self-
study hours)
• Steady flow equation, basic characteristics of flow of
gas and steam in nozzle and diffuser;**
• Flow velocity and flow rate, critical pressure ratio,
critical velocity and maximum flow;*
• Calculation of nozzle, effect of friction on flow;**
Adiabatic stagnation, adiabatic throttle. *
Chapter 8 Thermodynamic Process of Compressor (4
contact hours; 4 self-study hours)
• Working principle of compressor, ideal compression
work of gas, efficiency of compressor; **
• Influence of piston compressor clearance volume,
multistage compression and intercooling.*
Chapter 9 Gas Power Cycle (6 contact hours; 6 self-study
hours)
• Working principle and cycle analysis of piston type
internal combustion engine;**
• Gas turbine cycle and approches for thermal efficiency
improvement. **
Chapter 10 Steam Power Cycle (6 contact hours; 6 self- study hours)
Rankine cycle;**
Influence of steam parameters on thermal efficiency;
 Reheat cycle*, regenerative cycle;*
 Influence of fluid properties on thermal efficiency.
Chapter 11 Refrigeration Cycle (4 contact hours; 4 self-
study hours)
Reverse Carnot cycle;**
• Refrigeration coefficien, refrigeration of compressed
air and compression refrigeration of vapor;*
• Various approaches to improve refrigeration
coefficient, refrigerant and its thermodynamic
properties.
Chapter 12 Ideal Gas Mixture and Wet Air (4 contact hours;
4 self-study hours)
• Concept of ideal gas mixture; **
• Partial pressure and partial volume, expression of

	mixed gas components, specific heat of gas mixture,
	thermodynamic energy;
	• Calculation of enthalpy and entropy; *
	• Concept of wet air, absolute humidity and relative
	humidity, enthalpy of wet air, thermodynamic process
	of wet air, enthalpy humidity chart, application of wet
	air. *
	Part B. Classroom practice (8 contact hours; 4 self-study
	hours)
	• Application of first and second law of thermodynamics;
	• Analysis of gas power and steam power cycles;
	• Calculation of thermodynamic system.
	Part C. Experiment teaching (16 experimental operation
	hours; 10 self-study hours)
	Experiment content: P-T determination of saturated water
	vapor; working capacity loss of heat exchanger with
	temperature difference; flow characteristic of nozzle;
	thermal performance testing of thermal equipment such as
	compressor, refrigeration equipment and cooling tower.
	Requirements: grasp experiment principles; deepen
	understanding of theoretical knowledge; learn to how use
	common thermotechnical test instrument
	Part D. Computer practice (10 contact hours; 6 self-
	study hours)
	Content: Programming calculation and cycle analysis of
	steam power cycle by using working medium
	thermodynamic properties graphs, including Rankine cycle,
	reheat cycle and steam heat regenerative cycle
	Requirements: With knowledge of basic concepts and
	calculation methods of system thermodynamic calculation,
	students are expected to be able to programming
	independently and obtain calculation results through
	computer operation.
Study and examination	Final score includes: usual performance (20%); experiment
requirements and forms of	(10%), final exam (closed book written examination) (70%)
examination	Usual performance includes: assignment; attendance and
	computer practice
	Practice includes: experiment process; experiment report
	(50%); experiment exam (50%)
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, teachers pointer, etc.
Reading list	1. Required books
	[1] SHEN Weidao, TONG Jungeng. Engineering

क्र

Thermodynamics (4 th edition). Beijing: Higher Education
Press, 2007
[2] YAN Jialu, YU Xiaofu, WANG Yongqing.
Thermodynamic Properties Graphs of Water and Steam (2 nd
edition). Beijing: Higher Education Press, 2004
2. Reference books
[1] ZENG Danling, AO Yue, ZHANG Xinmin.
Engineering Thermodynamics (2 nd edition). Beijing: Higher
Education Press, 2002
[2] TONG Jungeng, FAN Yunliang. Learning Guidance
and Answers to Exercises for Engineering Thermodynamics
Study ((2 nd edition). Beijing: Higher Education Press, 2008
[3] HE Yaling. Brief Analysis of Engineering
Thermodynamics and Detailed Explanation of Typical
Questions. Xian: Xian Jiaotong University Press, 2000
[4] Richard E Sonntag, Claue Borgnakke. Introduction to
engineering thermodynamics. New York: John Wiley and
Sons, Inc, 2001
3. Experiment/computer practice instruction books
[1] Self-compiled teaching materials
4. Other materials
[1] PPT courseware (self-compiled)
[2] Supplementary engineering thermodynamics teaching
materials (self-compiled)

ሧ

	nce and recimology
Machine Design	
Competence field	Engineering Fundamentals
Module designation	Machine Design
Code, if applicable	14002090
Subtitle, if applicable	
Semester(s) in which the module	4 th semester
is taught	
Person responsible for the module	Professor DING Xiaohong
Lecturer	Professor DING Xiaohong
	Associate Professor SHEN Jingfeng
	Associate Professor HUANG Yiqing
	Lecturer SHI Yunxia
Language	Chinese
Relation to curriculum	This course focuses on introducing the analysis theories and
	system integration of machine design, and the knowledge on
	mechanism combination and variation, etc. It provides the
	basic principles of common mechanisms and the design
	methods of general mechanical components for machine
	design. This course represents the improvement and
	integration of fundamental courses of machine design. This
	course enables students to master the design and planning
	methods of mechanical system motion program, be able to
	design technical motion process and coordinated motion, get
	familiar with the methods of kinematics and dynamics
	analysis of mechanisms, and make comprehensive use of
	machine design theories to innovate mechanism design, so
	as to lay the theoretical foundation for the study of follow-
	up specialized courses.
Type of teaching, contact hours	Target students: sophomores of engineering related
	programs
	Type of teaching: most of the time is for lectures and practice
	teaching
	Contact hours: 96 hours
	Of which,
	Theoretical teaching: 78 hours
	Experiment / practice teaching: 18 hour
	Computer practice: 0 hour
	Size of class: 40-60 students
Workload	Workload = 180 hours
	Contact hours = 96 hours
	Self-study hours = 84 hours
Credit points	6.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
requirements according to the	students with clubs attendance rate over 2/5 and assignment

University of Shanghai for Scie	
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	Theoretical Mechanics, Mechanics of Materials
Module objectives/intended	Module objectives:
learning outcomes /	With design innovation as the principle and based on
	the fundamental courses of machine design, this course
	further introduces the kinematics analysis of planar
	mechanisms, the basic knowledge of machine dynamics, the
	innovation of combined mechanism design and the design
	and type-selection of typical parts. This course trains
	students' mechanical system design capabilities as well as
	mechanical innovation consciousness and ability.
	• Knowledge: master the methods of design and
	integration of mechanical system motion program;
	understand the ideas of designing technical motion
	process and coordinated motion; master the methods of
	mechanical system design and innovative mechanism
	combination; get familiar with the methods of adjusting
	mechanical velocity fluctuation; understand the basic
	principles of mechanical equilibrium; and learn to solve
	design, wear and strength calculation problems of
	commonly used mechanical parts.
	• Skills: be able to design and plan the motion program
	of mechanical system, correctly analyze and calculate
	the strength of general parts, and design and analyze
	simple mechanical system.
	• Competences: students are expected to acquire the
	capability of comprehensively analyzing and designing
	mechanical system, making use of the knowledge learnt
	to expand the design and analysis of mechanical parts
	and produce new products, and making comprehensive
	application of mechanical parts design knowledge into the design of specialized products, so as to improve
	the design of specialized products, so as to improve students capability of comprehensive design and
	innovation of mechanical products.
Content	Part A. Theoretical teaching (78 contact hours and 70
	self-study hours)
	Introduction: understand the nature, tasks and methods for
	learning of this course. (to be roughly understood; 2 contact
	hours)
	Chapter 1: Analysis of Planar Mechanism Motion (key
	content; 6 contact hours and 6 self-study hours)
	• Instantaneous velocity center method and its
	application in mechanism velocity analysis;

University of Shanghai for Scie	
	• Vector equation graphical method and its application in
	mechanism velocity analysis; **
	• Application of analytical method in mechanism
	velocity analysis. *
	Chapter 2: Mechanism Combination and Design Innovation
	(to be mastered; 6 contact hours and 8 self-study hours)
	• Basic mechanisms and their motion characteristics;
	• Basic mechanisms and the concept of their
	combinations; **
	• Principles for various combinations of mechanisms and
	their innovative design. **
	Chapter 3: Design of Technical Motion Process and
	Coordinated Motion (to be mastered; 6 contact hours and 4
	self-study hours)
	• Design of working principles and technical motion;
	• Design of technical motion process and law of motion;
	**
	• Design of coordinated motion of actuating mechanism;
	• Design of mechanical motion cycle diagram. **
	Chapter 4: Design of Mechanical Motion Program (to be
	roughly understood; 6 contact hours and 6 self-study hours)
	• Type-selection of mechanisms; **
	• Innovative design of mechanisms;
	• Design and establishment of mechanical motion
	program; *
	• Mechanical motion program evaluation system and
	evaluation methods.
	Chapter 5: Machine Running and The Regulation of Its
	Velocity Fluctuation (key content, 6 contact hours and 6 self-
	study hours)
	• Machine equivalent dynamics model; **
	• Establishment and solution of mechanical motion
	equation;
	Mechanical velocity fluctuation and regulation. *
	Chapter 6: Mechanical Equilibrium (key content, 6 contact
	hours and 6 self-study hours)
	• Rigid rotor equilibrium; **
	• Rigid rotor equilibrium test;
	Mechanism equilibrium. *
	Chapter 7: Mechanical System Design Examples (to be
	roughly understood; 6 contact hours and 6 self-study hours)
	Chapter 8: Mechanical Seal (to be mastered, 6 contact hours
	and 4 self-study hours)

Gasket seal; Packing seal; • Lubricant seal; • Seal ring seal. * • Chapter 9: Riveting, Welding and Bonding Design (to be roughly understood; 6 contact hours and 4 self-study hours) • Riveting; Welding; Bonding. **Chapter 10:** Friction Wheel Transmission (to be mastered; 4 contact hours and 4 self-study hours) • Transmission design of friction wheel with fixed transmission ratio; ** Friction wheel materials and lubricants. Chapter 11: Design of Modified Gear and Gearbox (key content; 6 contact hours and 6 self-study hours) Overview of modified gear; • Geometric calculation of modified gear drive; ** • Type of modified gear drive; • Classification of gearboxes; • Gearbox transmission mechanism; ** • Structural forms of main parts of gearbox; • Selection of main parameters of gearbox; ** Gearbox control mechanism. • Chapter 12: Couplers, Clutches and Brakes (to be mastered; 6 contact hours and 6 self-study hours) Couplers; ** • Clutches; * • Brakes. • Chapter 13: Spring Design (to be mastered; 6 contact hours and 4 self-study hours) Spring function and type; * • Spring materials and manufacture; ** Design and calculation of cylindrical helix compression • (tension) spring. Part B. Experiment/practice teaching (18 contact hours and 14 self-study hours) The drawing experiment of mechanism motion • diagram(4 contact hours and 4 self-study hours);** • The generating experiment of involute gear(6 contact hours and 4 self-study hours);** The experiment of shafting structure assembly and analysis(4 contact hours and 4 self-study hours);*

	• The parameters determination experiment of couplers
	(4 contact hours and 2 self-study hours).*
Study and examination	After-school exercises should be completed by students
requirements and forms of	independently after each class.
examination	Usual performance accounts for 30%, consisted of
	assignments, mid-semester examination and attendance;
	final exam (closed book written examination) accounts for
	70%.
Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Reading list	1. Recommended book
	[1] WANG Xinhua, Advanced Machine Design, Chemical
	Industry Press, 2013
	2. Reference books
	[1] HUANG Xikai, Principles of Machine (6th edition),
	Beijing: Higher Education Press, 2010
	[2] PU Lianggui, Machine Design (7th edition), Beijing:
	Higher Education Press, 2001
	[3] ZOU Huijun, Principles and Methods of Innovative
	Machine Design, Beijing: Higher Education Press,
	2008
	[4] Robert L. Mott, Machine Elements in Machine design
	(Fourth Edition), Prentice-Hall, US, ed2003

Engineering Fluid Mechanics	nce and Technology
Competence field	Engineering Fundamentals
Module designation	Engineering Fluid Mechanics
Code, if applicable	11000220
Subtitle, if applicable	
Semester(s) in which the module	4 th semester
is taught	
Person responsible for the module	Professor YANG Ailing
Lecturer	Professor GUO Xueyan
	Associate Professor CHEN Eryun
	Associate Professor WANG Haimin
	Associate Professor YANG Fan
	Associate Professor WANG Qikun
	Lecturer CHEN Liu
Language	Chinese / English
Relation to curriculum	Engineering Fluid Mechanics is an engineering basic course
	offered for undergraduates of energy and power engineering
	related programs. After studing of Calculus, College Physics
	and Theoretical Mechanics and this course, students can
	further study of Fluid Mechanics related courses such as
	Pump and Fans, Principles and Design of Heat Exchanger,
	Design of Process Equipment, and Process Fluid Machinery.
	Through this course, students will master the basic laws of
	fluid motion, have an intimate knowledge of basic principles
	of Fluid Mechanics and acquire abilities in analyzing and
	studying basic laws of fluid mechanics of power equipment,
	which will lay a solid foundation for further study and future
	engagement in engineering work.
Type of teaching, contact hours	Target students: sophomores of energy and power
	engineering related program
	Type of teaching: theoretical teaching, computer practice,
	experiment
	Contact hours: 96 hours
	Of which,
	Theoretical teaching: 64 hours
	Experiment teaching: 20 hours
	Computer practice: 12 hours
	Size of class: 60 people
Workload	Workload= 180 hours
	Contact hours = 96 hours
	Self-study hours = 84 hours
Credit points	6.0
Requirements according to the	Students with class attendance rate over 2/3, assignment

examination regulations	nce and Technology completion rate over 2/3, and submission of complete
-	experiment report
Recommended prerequisites	Calculus, College Physics, Theoretical Mechanics
Module objectives/intended	Module objectives:
learning outcomes	Engineering Fluid Mechanics is an engineering basic course
-	offered for undergraduates of energy and power engineering
	related programs. It mainly introduces the basic concepts and
	theories of Fluid Mechanics and its enginnering application.
	Through this course, students can acquire the abilities in
	analyzing and studying basic laws of mechanics of power
	equipment, which will lay a solid foundation for further
	study and future engagement in engineering work.
	• Knowledge: Master basic concepts of fluid motion;
	describe basic laws, basic theories and calculation
	methods of fluid motion.
	• Skills: Through this course, students can acquire the
	abilities in analyzing and studying basic laws of fluid
	mechanics of power equipment so as to be able to
	modify and optimize design to improve operation
	efficiency of power equipment.
	• Competences: Through intergration of theoretical
	knowledge and practical work, students are able to
	optimize product design, organize product
	manufacturing, and solve thermal energy and power
	machinery design related problems with acquired
Contant	knowledge.
Content	Part A. Theoretical teaching (64 contact hours; 68 self-
	study hours)Chapter 1 Fluid and Physical Properties (5 contact hours; 6
	self-study hours)
	 Subjects and Development of Fluid Mechanics Study;
	Study subjects, research methods and development of
	fluid mechanics;
	 Continuous Medium Hypothesis, definition of fluid
	particles and continuous medium hypothesis;*
	 Basic Attributes of Fluid, density, viscosity and
	compressibility of fluid;
	 Newton inner friction theorem.**
	Chapter 2 Fluid Statics (8 contact hours; 9 self-study hours)
	• Hydrostatic pressure and its characteristics;
	Characteristics of hydrostatic pressure, basic equation
	of fluid statics;
	• Establishment method for fluid differential balance

equation, basic relation formula of fluid statics,
differential pressure calculation method within static
fluid and pressure measuring principle of liquid column
manometer;**
• Relative balance of fluid, pressure distribution law and
calculation of relatively balanced fluid;
• Static Fluid Forces on Walls, basic methods and
relevant calculation for static fluid surface and plane stress.*
Chapter 3 Hydrokinematics (5 contact hours; 6 self-study
hours)
• Flow field and its description method, two description
methods of flow field; basic concepts of material
derivative, local derivative and convective derivative;*
• Streamline and trace, concepts and relevant features of
trace, streamline and flow tube; *
• Flow calculation method; **
• Definitions of flow field vorticity, vortex line and
vortex tube;
• Flow pattern of viscous fluid, Reynolds experiment;
basic features of laminar flow and turbulent flow,
definition and functions of Reynolds number.*
Chapter 4 Analysis and Application of Fluid Mechanics (12
contact hours; 12 self-study hours)
• Continuity equation of reynolds transport theory and
integral form;
• Physical meaning of Reynolds transport theory, basic
equation of fluid mechanics by using Reynolds
transport theory; continuity equation of one
dimensional steady pipe flow and its application; **
• Energy equation and Bernoulli Equation, energy
equation of one dimensional constant adiabatic ideal
flow, physical meaning of Bernoulli equation of non-
compressible ideal steady flow, application of Bernoulli
equation in engineering work;**
• Momentum equation and application, equation of
steady flow; solving one dimensional steady flow
problems by using continuity equation, Bernoulli
equation and momentum equation; **
• Moment of momentum equation of steady flow and its
application in impeller machinery.
Chapter 5 Internal Flow of Incompressible Viscous Fluid
(13 contact hours; 14 self-study hours)

University of Shanghai for Scie	
	flow of contraction nozzle.**
	Chapter 8 Similarity Principle* (7 contact hours; 7 self-
	study hours)
	• Similar flow conditions, basic conditions of flow field similarity and interrelations between similar proportion constants;*
	• Similarity principle and similarity criterion, physical meaning of commonly used similarity numbers of fluid mechanics;**
	• Dimensional analysis, dimensional analysis method; *
	• Approximate model calculation.
	Part B. Practice teaching* (12 computer practice hours;
	6 self-study hours)
	Complete 3 calculation examples of flow around circular
	cylinder, cavity flow and numerical simulation of compressor
	internal flow field with Phoenix Software.
	Part C. experiment teaching* (20 experiment operation
	hours; 10 self-study hours)
	Complete hydrostatics experiment, Reynolds experiment,
	non-compressible fluid momentum equation verification,
	non-compressible fluid energy equation verification,
	resistance coefficient of round tube internal path and local
	resistance coefficient determination experiment.
Study and examination	6 assignments and 1 final exam; usual performance accounts
requirements and forms of	for 30% of final score; each assignment accounts for 5%;
examination	final exam accounts for 70%; final exam is closed book
	written examination
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, teachers pointer, product model etc.
Reading list	1. Required books
	[1] GUI Ketint, WANG Jun, WANG Qiuying. Engineering
	Fluid Mechanics (1st edition). Beijing: Science Press, 2003
	2. Reference books
	[1] KONG Long. Engineering Fluid Mechanics (1st
	edition). Beijing: China Electric Power Press, 1992
	[2] ZHOU Guangjong, YAN Zongyi, XU Shixiong. Fluid
	Mechanics (2nd edition). Beijing: Higher Education Press,
	2000
	[3] Roberson, Emeritus. Engineering Fluid Mechanics, 10th
	Ed, New York: Wiley, 2012.
	3. Experiment/computer practice instruction books
	[1] Self-compiled teaching materials
	4. Other materials

[1] PPT courseware (self-compiled)

Ingineering Fundamentals rocess Control Theory 1000320 th semester Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Thinese this course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical nodels of control system such as open and closed loop
rocess Control Theory 1000320 th semester Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
1000320 th semester Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
th semester Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process quipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
Associate Professor HU Zhuohuan Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process quipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process quipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
Associate Professor XU Hongtao ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
ecture LI Zeqiu ecturer SUN Li ecturer WANG ZHiyuan Chinese Chis course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
ecturer SUN Li ecturer WANG ZHiyuan Chinese This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
chinese This course highlights the characteristics of Process quipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
Chinese Chis course highlights the characteristics of Process Equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
This course highlights the characteristics of Process equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
equipment and Control Engineering program. Students can ot only master basic knowledge of control theories but also articipate in practice and application. Main contents include asic concepts of process control systems and application chemes of typical process control system. This course ontains basic concepts of automatic control, mathematical
ransfer functions, time domain analysis method, root locus echnique, frequency domain analysis of control system, esign and calibration of control system and application chemes of typical process control system such as PLC ontrol system and PID control system.
Arget students: Juniors of Frocess Equipment and Control Angineering program. Pype of teaching: theoretical teaching, multimedia aided Instruction Contact hours: 96 hours Of which Theoretical teaching: 66 hours Experiment / practice teaching: 30 hours ize of class: No more than 60 people for theoretical eaching
Vorkload= 180 hours Contact hours =96 hours elf-study hours =84 hours
.0
Only students with class attendance rate over 2/3 and

Recommended prerequisites	Calculus; College Physics; Linear Algebra; Engineering
1	Thermodynamics.
Module objectives/intended	Module objectives:
Module objectives/intended learning outcomes	 Module objectives: The task of this course is to enable students to understand the static and dynamic characteristics of process flow and production process. Through this course, students can acquire the abilities in analyzing and studying basic principles of process control. Knowledge: Master basic knowledge of process equipment control and principle of process controller; obtain a broad knowledge of process equipment measurement and control technology. Skills: Through this course, students can acquire the abilities in analyzing the process by using technical means, to be able to design and calibrate the control system. Competences: Through system intergration of computer measurement and control techniques for process equipment, students are able to build a fine
	foundation for future practical work and scientific
	research.
Content	Part A. Theoretical teaching (66 contact hours; 75 self-
	study hours)
	Chapter 1 Basic Concepts of Automatic Control (6 contact
	hours; 6 self-study hours)
	• Composition of automatic control system, negative feedback principle and classification of control
	systems. Chapter 2 Mathematical Model of Control System (8
	contact hours; 12 self-study hours)
	 Method of building dynamic differential equation;
	 Open and closed loop transfer function; *
	 Error transfer function; **
	 Rendering and simplification of block diagram signal
	flow; **
	• Method of using Mason Gain Formula to get transfer
	function. ** Charter 2 Time Demain Analysis Mathed (8 context house)
	Chapter 3 Time Domain Analysis Method (8 contact hours; 10 solf study hours)
	10 self-study hours)
	• Time domain analysis method and stability concepts
	and criteria; *
	• Calculation and analysis of steady state error. **
	Chapter 4 Root Locus Technique (12 contact hours; 12 self-

study hours)study hours)•Principle of drawing root locus plot; **Chapter 5 Frequency Domain Analysis of Control System(12 contact hours; 13 self-study hours)•Open and closed loop frequency characteristics of linear systems; **•Analysis of absolute stability of system; **•Analysis of absolute stability index; **•Relationship between frequency domain and time domain index. **•Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)•Basic control law of linear system;•Common correction device; **•Application of frequency characteristic method in system calibration; **•Analytical methods for sample control system dynamic and steady-state performance;•Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)•PID control system;•Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)•Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Wusia performance includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard, chalks		
Chapter 5 Frequency Domain Analysis of Control System (12 contact hours; 13 self-study hours)• Open and closed loop frequency characteristics of linear systems; **• Analysis of absolute stability of system; **• Calculation of relative stability index; **• Relationship between frequency domain and time domain index. **Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)• Basic control law of linear system;• Common correction device; **• Application of frequency characteristic method in system calibration; **• Analytical methods for sample control system dynamic and steady-state performance;• Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Usual performance includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		study hours)
(12 contact hours; 13 self-study hours)• Open and closed loop frequency characteristics of linear systems; **• Analysis of absolute stability of system; **• Calculation of relative stability index; **• Relationship between frequency domain and time domain index. **Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)• Basic control law of linear system;• Common correction device; **• Application of frequency characteristic method in system calibration; **• Analytical methods for sample control system dynamic and steady-state performance;• Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationKudy and examination examinationKida employedMedia employed		• Principle of drawing root locus plot; **
 Open and closed loop frequency characteristics of linear systems; ** Analysis of absolute stability of system; ** Calculation of relative stability index; ** Relationship between frequency domain and time domain index. ** Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours) Basic control law of linear system; Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process involution of 70%) examination Kudy and examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) examination Multimedia computers, projector, laser pointers, blackboard, 		Chapter 5 Frequency Domain Analysis of Control System
systems; **Analysis of absolute stability of system; **Calculation of relative stability index; **Relationship between frequency domain and time domain index. **Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)Basic control law of linear system;Common correction device; **Application of frequency characteristic method in system calibration; **Analytical methods for sample control system dynamic and steady-state performance;Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)PID control system;Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)		(12 contact hours; 13 self-study hours)
 Analysis of absolute stability of system; ** Calculation of relative stability index; ** Relationship between frequency domain and time domain index. ** Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours) Basic control law of linear system; Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination requirements and forms of Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) examination Media employed Multimedia computers, projector, laser pointers, blackboard, 		• Open and closed loop frequency characteristics of linear
 Calculation of relative stability index; ** Relationship between frequency domain and time domain index. ** Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours) Basic control law of linear system; Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process imulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination requirements and forms of final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) 		systems; **
 Relationship between frequency domain and time domain index. ** Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours) Basic control law of linear system; Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination requirements and forms of examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed 		• Analysis of absolute stability of system; **
domain index. **Chapter 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)• Basic control law of linear system; • Common correction device; **• Application of frequency characteristic method in system calibration; **• Analytical methods for sample control system dynamic and steady-state performance; • Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) • PID control system; • Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		• Calculation of relative stability index; **
Keaper 6 Design and Calibration of Control System (12 contact hours; 12 self-study hours)Basic control law of linear system;Common correction device; **Application of frequency characteristic method in system calibration; **Analytical methods for sample control system dynamic and steady-state performance;Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)PID control system;Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationKudy and examination equirements and forms of examinationKudy and examination requirements and forms of examinationKudy and examination requirements and forms of examinationKuda performance includes: usual performance (30%); final exam requirements and forms of experiment exam (50%)Media employedMutimedia computers, projector, laser pointers, blackboard		• Relationship between frequency domain and time
contact hours; 12 self-study hours)Basic control law of linear system;Common correction device; **Application of frequency characteristic method in system calibration; **Analytical methods for sample control system dynamic and steady-state performance;Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)PID control system;Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)Intaining process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination)(70%)Study and examination requirements and forms of examinationFinal score includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment score includes: experiment report (50%); and experiment exam (50%)		domain index. **
 Basic control law of linear system; Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination final score includes: usual performance (30%); final exam (closed-book written examination) (70%) examination (Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment score includes: experiment report (50%); and experiment exam (50%) Media employed 		Chapter 6 Design and Calibration of Control System (12
 Common correction device; ** Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination requirements and forms of simulation and score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed Multimedia computers, projector, laser pointers, blackboard, 		contact hours; 12 self-study hours)
 Application of frequency characteristic method in system calibration; ** Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination requirements and forms of examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) 		• Basic control law of linear system;
system calibration; **• Analytical methods for sample control system dynamic and steady-state performance;• Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		Common correction device; **
 Analytical methods for sample control system dynamic and steady-state performance; Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours) Study and examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed 		• Application of frequency characteristic method in
And steady-state performance;• Stability criteria for sample systems.Chapter 7 Application Schemes of Typical Process ControlSystem (8 contact hours; 10 self-study hours)• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experimenthours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examinationrequirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		system calibration; **
 Stability criteria for sample systems. Chapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours) PID control system; Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours) Study and examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed 		• Analytical methods for sample control system dynamic
KudyAndChapter 7 Application Schemes of Typical Process Control System (8 contact hours; 10 self-study hours)• PID control system; • Control examples of process equipment.Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Studyandrequirementsandformsfinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		and steady-state performance;
System (8 contact hours; 10 self-study hours)• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experimenthours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examinationrequirements and forms of examination(closed-book written examination) (70%)examinationExperiment score includes: assignment, attendance rate and computer practice.Experiment score includes: experiment report (50%); and exam (50%)Media employed		• Stability criteria for sample systems.
Media employed• PID control system;• Control examples of process equipment.Part B. Experiment / practice teaching (30 experimentPart B. Experiment / practice teaching (30 experimenthours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examinationFinal score includes: usual performance (30%); final examination(closed-book written examination) (70%)examinationExperiment score includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		Chapter 7 Application Schemes of Typical Process Control
 Control examples of process equipment. Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours) Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours) Study and examination requirements and forms of examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Multimedia computers, projector, laser pointers, blackboard, 		System (8 contact hours; 10 self-study hours)
Part B. Experiment / practice teaching (30 experiment hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examination requirements and forms of examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		• PID control system;
hours; 9 self-study hours)• Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self- study hours)Study and examinationFinal score includes: usual performance (30%); final exam (closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		• Control examples of process equipment.
 Training process simulation of PLC control system in computer operation (30 experiment hours; 9 self-study hours) Study and examination Final score includes: usual performance (30%); final exam (closed-book written examination) (70%) examination Usual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed Multimedia computers, projector, laser pointers, blackboard, 		Part B. Experiment / practice teaching (30 experiment
StudyandexaminationFinal score includes: usual performance (30%); final examrequirementsandformsofexamination(closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rate and computer practice.Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		hours; 9 self-study hours)
StudyandexaminationFinal score includes: usual performance (30%); final examrequirementsandformsof(closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rateand computer practice.and computer practice.Experiment score includes: experiment report (50%); andexperiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		• Training process simulation of PLC control system in
StudyandexaminationFinal score includes: usual performance (30%); final examrequirementsandformsof(closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		computer operation (30 experiment hours; 9 self-
requirementsandformsof(closed-book written examination) (70%)examinationUsual performance includes: assignment, attendance rate and computer practice.Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		study hours)
examinationUsual performance includes: assignment, attendance rate and computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,	Study and examination	Final score includes: usual performance (30%); final exam
And computer practice. Experiment score includes: experiment report (50%); and experiment exam (50%) Media employed Multimedia computers, projector, laser pointers, blackboard,	requirements and forms of	(closed-book written examination) (70%)
Experiment score includes: experiment report (50%); and experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,	examination	Usual performance includes: assignment, attendance rate
experiment exam (50%)Media employedMultimedia computers, projector, laser pointers, blackboard,		and computer practice.
Media employed Multimedia computers, projector, laser pointers, blackboard,		Experiment score includes: experiment report (50%); and
		experiment exam (50%)
chalks	Media employed	Multimedia computers, projector, laser pointers, blackboard,
		chalks

Reading list	1. Required books
	[1] TIAN Zuohua. Foundation of Engineering Control.
	Beijing: Tsinghua University Press, 2010
	2. Reference books
	[1] ZHOU Chunhui. Principles of Chemical Process
	Control. Beijing: Chemical Industry Press, 1998
	[2] HU Shousong. Automatic Control Principle (Fourth
	Edition). Beijing: Science Press, 2001
	[3] LU Jingchao. Typical Analysis and Tests on The
	Problems of Automatic Control Principle. Xi'an: Northwest
	Industrial University Press, 2001
	[4] HUANG Zhonglin. MATLAB Calculation and
	Simulation of Control System (Second Edition). Beijing:
	National Defend Industry Press, 2006
	[5] ZHANG Bin. Automatic Control Principle. Beijing:
	Beijing University of Posts and Telecommunications Press,
	2002

Heat Transfer	
Competence field	Engineering Fundamentals
Module designation	Heat Transfer
Code, if applicable	11000050
Subtitle, if applicable	
Semester(s) in which the module	5 th semester
is taught	
Person responsible for the module	Professor YANG Mo
Lecturer	Professor LIN Zonghu
	Professor CHENG Ping
	Professor LU Mei
	Professor SHAN Yanguang
	Professor LI Ling
	Associate Professor JIA Zhihai
	Associate Professor YE Li
	Associate Professor ZHAO Ming
	Associate processor XU Hongtao
	Lecturer WANG Zhiyun
	Lecturer CHEN Jian
Language	Chinese / English
Relation to curriculum	Heat Transfer is one of the main courses for undergraduates of Energy and Power Engineering related programs. It focuses on the study of heat transfer rules. The course mainly explains concepts, theory, calculation and application of conduction, convection, phase change, radiation and heat transfer processes. It also introduces some elementary knowledge of typical computer solution of heat transfer problems. As a link between theoretical study and practical work, the course is an important way of cultivating students' abilities in analyzing and solving heat transfer problems. It still lays a foundation for follow-up Professional Comprehensive Course Design, Internship and Bachelor Thesis.
Type of teaching, contact hours	Target students: undergraduates of energy and power engineering related programs. Type of teaching: theoretical teaching, computer practice, experiment Contact hours: 96 hours Of which, Theoretical teaching: 72 hours Computer practice: 12 hours Experiment: 12 hours Size of class: No more than 60 people for theoretical

	teaching; no more than 60 people for computer practice; no
	more than 4 people in each group for experiment.
Workload	Workload= 180 hours
	Contact hours $= 96$ hours
	Self-study hours $= 84$ hours
Credit points	6.0
Requirements according to the	Only students with class attendance rate over 2/3, computer
examination regulations	practice attendance more than twice and having completed
-	required teaching experiments are allowed to take the exam.
Recommended prerequisites	College Physics; Calculus; Engineering Thermodynamics;
	Enginerring Fluid Mechanics.
Module objectives/intended	Module objectives:
learning outcomes	Heat Transfer is one of the basic courses for undergraduates
C	of energy and power engineering related programs before the
	start of specialized courses. The course helps students
	understand basic laws, concepts, theories, calculation and
	application knowledge of Heat Transfer, and lays a
	foundation for further study and future practical work. The
	course can improve students' abilities in thinking and
	practice as well as abilities in analyzing and solving practical
	problem.
	• Knowledge: Heat Transfer includes four modules. 1.
	Basic knowledge module, including basic concepts,
	theories and calculation methods of conduction,
	convection, radiation and heat transfer processes. It
	helps students solve basic heat transfer problems in
	engineering; 2. Theoretical knowledge module,
	including boundary layer theory, similarity and analogy
	method and Numerical solution. This module focuses
	on methods for problem analysis and solution as well as
	training of mastery of method and thinking ability; 3.
	Application of Heat Transfer, including heat exchanger
	calculation and and new heat transfer technologies; 4.
	Computer practice of Heat Transfer. It focuses on
	solving three main Heat Transfer problems including
	one-dimensional, two-dimensional and non-steady heat
	transfer.
	• Skills: Lay a foundation for further study and future
	practical work; improve students' abilities in thinking
	and practice.
	• Competences: Improve students' ability in solving
	practical physical problems with basic Heat Transfer
	theories integrating theoretical knowledge with practice

	work.
Content	Part A. Theoretical teaching (72 contact hours; 64 self-
	study hours)
	Chapter 1 Introduction (6 contact hours; 6 self-study
	hours)
	• Three ways of heat transfer: conduction, convection and
	radiation; *
	• Heat resistance; heat transfer process and coefficient
	development history of Heat Transfer.
	Chapter 2 Basic Rules of Heat Conduction and Steady Hea
	Conduction (10 contact hours; 8 self-study hours)
	• Temperature field; temperature gradient; Fourier's law
	and heat transfer coefficient;**
	• Differential equation of heat conduction; initial and
	boundary conditions; *
	• Thermal conductivity of monolayer and multilayer fla
	walls, thermal conductivity of single and multi cylinde
	wall; fin heat conduction; fin efficiency;
	• Variable cross-section thermal conductivity, here
	source and multi dimension heat conduction.
	Chapter 3 Non-steady Heat Conduction (6 contact hours;
	self-study hours)
	• Basic concepts of non-steady heat conduction; lumpe
	parameter method;**
	• Analysis of one dimensional unsteady heat conductio
	solution;*
	• Nomograph;
	• Solving of two-dimensional and three-dimensional
	unsteady heat conduction problems;
	• Non steady heat conduction of a semi infinite body.
	Chapter 4 Numerical Solution of Heat Conductio
	Problems (8 contact hours; 6 self-study hours)
	• Basic ideas of numerical solution of heat conductio
	problems;
	• Establishment of discrete equations; solution of
	algebraic equations;
	• Numerical solution of unsteady heat conduction
	problems.
	Chapter 5 Heat Convection (12 contact hours; 10 self-stud
	hours)
	• Introduction of heat convection, Newton's formula
	affecting factors of heat convection coefficient
	concepts of velocity and temperature boundary layer;*

	boundary conditions, Integral equations for laminar
	flow along plate heat exchanger and its solution;**
•	• Comparison between momentum transfer and heat
	transfer, application of similarity theory in convective
	heat transfer;
•	• Forced convection heat transfer tube characteristic and
	experimental type;**
	• Flow around single tube and tube bundle heat release
	and relations, large space free convection and limited
	space free convection.
	Chapter 6 Boiling and Condensation Heat Transfer (4
	contact hours; 4 self-study hours)
	• Dropwise condensation and film condensation; film
	condensation heat transfer analysis and experimental
	correlation, affecting factors of film condensation;
	• Large container saturated boiling curve, calculation of
	nucleate boiling, factors affecting boiling heat transfer.
	Chapter 7 Basic Law of Radiation and Object Radiation
	Characteristics (10 contact hours; 8 self-study hours)
	• Characteristics of thermal radiation, absorptance rate,
	reflectance and penetration ratio, black, white,
	transparent body, blackness, radiation force and
	monochromatic radiation force, directional radiation
	intensity, basic law of thermal radiation; **
	 Planck's constant law; Wien's law, Stephen Boltzmann's
	law, Lambert's law, radiation characteristics of solid
	and liquid, absorption ratio of the actual object and
	Kirchhoff's law. *
	Chapter 8 Calculation of Radiation Heat Transfer (8 contact
	nours; 8 self-study hours)
	 Angular coefficient; radiation heat transfer between two
	solid surfaces separated by heating medium;**
	 Calculation of radiation heat transfer surface system,
	network method, radiation heat hardening and
	weakening; heat shield plate; gas radiation.
	Chapter 9 Analysis of Heat Transfer Process and
	Calculation of Heat Exchanger (8 contact hours; 8 self-study
	nours)
	surface heat transfer coefficient;
	coefficient; critical insulation diameter, average

, ,	5,
	temperature in the pattern of the heat exchanger and
	logarithmic pressure;**
	• Heat calculation of heat exchanger, -NTU method; teat
	transfer enhancement and insulation technology.
	Part B. Computer practice (12 contact hours; 10 self-
	study hours)
	Solving three steady or non-steady heat conduction problems
	with computer; master value solution of heat conduction
	problems; conduct temperature field calculation under
	specific boundary conditions
	Part C. Experiment (12 contact hours; 10 self-study
	hours)
	• Heat conduction experiment: master affecting factors of
	conduction process; familiar with measurement method
	of each parameter;
	• Convection heat transfer experiment; master
	convection process; familiar with testing method of
	each parameter;
	• Radiation heat transfer experiment: master affecting
	factors of radiation heat transfer process; familiar with
	testing method of each parameter.
Study and examination	8 assignments (accounting for 30% of final score with each
requirements and forms of	assignment accounting for 3%), 1 mid-term exam
examination	(accounting for 30% of final score) and 1 final exam
	(accounting for 70% of final score)(closed book written
	examination).
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, product model.
Reading list	1. Required books
	[1] YANG Shiming, TAO Wenquan. Heat Transfer (4th
	edition). Beijing: Higher Education Press, 2006.
	2. Reference books (English reference books required)
	[1] YANG Shiming, TAO Wenquan. Heat Transfer (3rd
	edition). Beijing: Higher Education Press, 1988.
	[2] J.P. Holman. <i>Heat Transfer</i> , Seventh. 9th Ed McGraw-
	Hill New York1999.
	[3] XIE Shuyi. Vector Analysis and Field Theory (2nd
	edition). Beijing: Higher Education Press, 1987.
	[4] TAO Wenquan. Numerical Heat Transfer. Xian: Xian
	Jiaotong University Press, 1988.
	3. Experiment/computer practice instruction books
	[1] Self-compiled teaching materials
	4. Other materials

, 8	67
	[1] PPT courseware (self-compiled)
	[2] Supplementary heat transfer teaching materials (self-
	compiled)

Competence field	Engineering Fundamentals
Module designation	Introduction to Process Equipment and Control Engineering
Code, if applicable	11000420
Subtitle, if applicable	
Semester(s) in which the module	5 th semester
is taught	
Person responsible for the module	Professor CAI Xiaoshu
Lecturer	Professor CAI Xiaoshu
	Associate Professor YE Li
	Associate Professor XU Bo
	Lecturer XU Jiayin
	Lecturer WANG Zhiyuan
Language	Chinese & English
Relation to curriculum	This course is open to the junior students who have
	completed the usual courses in Calculus, Physics,
	Engineering Thermodynamics, Engineering Fluid
	Mechanics and Intensive English. It introduces the progress
	of the process industry, the basic equipment in the unit
	operation and the control system in the chemical engineering
	in English. Bilingual teaching is used to improve students'
	abilities of listening, speaking, reading and writing in
	professional English. It makes sound basis for reading the
	English scientific papers and communicating with the
	engineers or researchers from all over the world.
Type of teaching, contact hours	Target students: junior of Process Equipment and Control
Type of teaching, contact nours	Engineering program
	Type of teaching: theoretical teaching
	Contact hours: 64 hours
	Of which,
	Theoretical teaching: 64 hours
	Size of class: No more than 60 people for theoretical
Workland	teaching Workload 120 hours
Workload	Workload= 120 hours
	Contact hours = 64 hours
	Self-study hours = 56 hours
Credit points	
Requirements according to the	Only students with class attendance rate over $2/3$, assignment
examination regulations	completion rate over 2/3, and performing required oral
	presentation are allowed to take the exam.
Recommended prerequisites	Intensive English; Reading and Writing in Technical
	English; College Chemistry ;Mechanics of Materials;
	Theoretical Mechanics ; Engineering Thermodynamics;

Introduction to Process Equipement and Control Engineering

	Engineering Fluid Mechanics; Heat Transfer.
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to have a clear
	conception of Process Equipment and Control Engineering.
	Specific objectives include:
	• Knowledge: Keep in mind a lot of professional English
	words on chemical engineering, unit operation and
	process industry; understand the definition of stress and
	strain in the solid mechanics; master classification of
	unit operations and transport phenomena in process
	industry; get familiar with the main components applied
	on pressure vessels; recognize types of heat exchangers,
	reactors, pumps and valves; grasp the traditional way to
	control a process.
	• Skills: Translate English literature into a well-written
	Chinese one; communicate with engineers and
	researches in the same field.
	• Competences: Get familiar with the style of English
	scientific papers; have a whole and clear conception of
	process equipment and control engineering; improve
	abilities of listening, speaking, reading and writing in
	English.
Content	Part A. Theoretical teaching (64 contact hours; 56 self-
	study hours)
	Chapter 1 Basic Knowledge of Mechanics (4 contact hours;
	2 self-study hours)
	• General equilibrium conditions of a system;
	• Stress and Strain.
	Chapter 2 Metallic Materials (4 contact hours; 2 self-study
	hours)
	• Properties of materials; **
	• Manufacturing engineering processes.
	Chapter 3 Process Industry (16 contact hours; 16 self-study
	hours)
	• Chemical engineering; *
	• Principles of heat transfer; **
	• Unit operation in chemical engineering; **
	Chemical reaction engineering; *
	Chapter 4 Process Equipment (16 contact hours; 16 self-
	study hours)
	• Pressure vessels and their components; **
	• Distilling equipment; *
	 Types of heat exchangers; **

University of Shanghai for Scie	nce and Technology
	• Types of reactors. *
	Chapter 5 Process Machinery (16 contact hours; 16 self-
	study hours)
	• Pumps; **
	• Solid liquid separation; *
	• Valves; **
	• Seal classification.
	Chapter 6 Process Control (8 contact hours; 4 self-study
	hours)
	• Introduction to process control; **
	• Process control equipment.
	Part B. Computer practice (0 hour)
Study and examination	Final score includes: usual performance (30%), Oral exam
requirements and forms of	(70%) Usual performance includes: assignment and
examination	attendance rate.
	Oral exam score includes: PPT preparation (30%); language
	organization and performance (70%).
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1] XU Hong, DONG Qiwu, WU Dongli. Professional
	English on the Process Equipment and Control Engineering
	Combustion. Beijing: Chemical Industry Press, 2000
	2. Reference books
	[1] Warren McCabe, Julian Smith, Peter Harriott. Unit
	Operations of Chemical Engineering 4th edition. McGraw-
	Hill Education, 1985
	[2] B.G. Kyle. Chemical and Process Thermodynamics.
	Prentice-Hall, 1984
	[3] Meinhard Schobeiri. Fluid Mechanics for Engineering:
	a Graduate Textbook. Springer, 2010
	3. References for oral presentation
	[1] Yu.F. Maydanik. Review: Loop Heat Pipes. Applied
	Thermal Engineering 25 (2005) 635-657
	[2] L.V. Biert et al. A Review of Fuel Cell Systems for
	Maritime Applications. Journal of Power Sources 327
	(2016) 345-364
	4. Other materials
	[1] PPT courseware (self-compiled)

Engineering Applications

Safety Technology of Process Equipment

Competence field	Engineering Applications
Module designation	Safety Technology of Process Equipment
Code, if applicable	11001510
Subtitle, if applicable	
Semester(s) in which the module	3 rd semester
is taught	
Person responsible for the module	Associate Professor XU Bo
Lecturer	Associate Professor XU Bo
	Associate Professor NAN Guofang
	Associate Professor HU Zhuohuan
	Lecturer SUN Li
Language	Chinese
Relation to curriculum	Safety Technology of Process Equipment is an engineering
	application course offered to undergraduates of Process
	Equipment and Control Engineering program. Theoretical
	knowledge in the curriculum is crucial for main devices
	applied in process equipment, such as heat exchanger,
	pressure vessel, and reactor. Based on the engineering
	practice, the course systematically introduces basic
	regulations and safety management methods, including
	standards, case analysis, materials, safety accessory and
	detection technology, which is useful for students to engage
	in related work.
Type of teaching, contact hours	Target students: sophomores of Process Equipment and
	Control Engineering program
	Type of teaching: theoretical teaching
	Contact hours: 48 hours
	Of which
	Theoretical teaching: 48 hours
	Size of class: No more than 60 people for theoretical
	teaching
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours $= 42$ hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 and
examination regulations	assignment completion rate over 2/3 are allowed to take the
examination regulations	assignment completion rate over $2/3$ are allowed to take the exam.
examination regulations Recommended prerequisites	

Module objectives/intended	Module objectives:
5	The task of this course is to enable students to understand
learning outcomes	
	safety technology of process equipment and basic
	engineering theories. Specific objectives include:
	• Knowledge: Master basic knowledge and theories
	required by learning Safety Technology of Process
	Equipment, such as standards, design technique,
	manufacturing technology, and detection technology;
	understand the structure and the mechanism of safety
	device.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about Safety Technology of
	Process Equipment; understand engineering
	applications of pressure vessel and safety device;
	acquire deep understanding of the safe operation about
	pressure vessel.
	• Competences: Students acquire practical abilities
	about the prevention, the emergency disposal and the
	post-mortem analysis of pressure vessel explosion
	accident.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1 Pandect of pressure vessels (9 contact hours; 6
	self-study hours)
	• Safety of pressure vessels; *
	• Operating characteristic of pressure vessels; *
	• Definition and classification of pressure vessels. **
	Chapter 2 Stress and design method of pressure vessel (6
	contact hours; 6 self-study hours)
	 Load and Stress classification of pressure vessels;* Design methods of pressure vessel **
	• Design methods of pressure vessel. ** Chapter 2 Pressure vessel test technology (6 contest hours)
	Chapter 3 Pressure vessel test technology (6 contact hours; 6 self-study hours)
	 Test methods for pressure vessels; *
	-
	• Hydraulic test, pressure test and air tightness test. ** Chapter 4 Nondestructive test of pressure vessels (6 centred
	Chapter 4 Nondestructive test of pressure vessels (6 contact hours: 6 self study hours)
	 hours; 6 self-study hours) Methods of nondestructive test; *
	• Applications of nondestructive test. ** Chapter 5 Safety device for pressure vessel (6 contact hours:
	Chapter 5 Safety device for pressure vessel (6 contact hours;6 self-study hours)
	-
	 Basic structure of safety device; * Design and selection of safety device; **
	• Design and selection of safety device; **

University of Shanghai for Science and Technology	
	• Applications of safety device. **
	Chapter 6 Gas cylinders and mobile pressure vessels (9
	contact hours; 6 self-study hours)
	• Basic concepts of gas cylinders and mobile pressure vessels; *
	• Safe applications of gas cylinders and mobile pressure
	vessels; **
	• Methods of safety management. *
	Chapter 7 Inspection technology of pressure vessels (6
	contact hours; 6 self-study hours)
	• Basic requirements of inspection technology; *
	• Applications of inspection technology. **
	David D. Even and wards (and address the a shire a (0 h arrow)
	Part B. Experiment / practice teaching (0 hours)
Study and examination	Final score includes: usual performance (30%); final exam is
Study and examination requirements and forms of	
5	Final score includes: usual performance (30%); final exam is
requirements and forms of	Final score includes: usual performance (30%); final exam is presentation (70%).
requirements and forms of	Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance
requirements and forms of examination	Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate.
requirements and forms of examination	Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard,
requirements and forms of examination Media employed	Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks
requirements and forms of examination Media employed	Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks 1. Required books
requirements and forms of examination Media employed	 Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks 1. Required books [1] TAN Wei, Safety Management Technology of Pressure
requirements and forms of examination Media employed	 Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks 1. Required books [1] TAN Wei, Safety Management Technology of Pressure Vessel. Beijing: Chemical Industrial Press, 2006
requirements and forms of examination Media employed	 Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks 1. Required books [1] TAN Wei, Safety Management Technology of Pressure Vessel. Beijing: Chemical Industrial Press, 2006 2. Reference books
requirements and forms of examination Media employed	 Final score includes: usual performance (30%); final exam is presentation (70%). Usual performance includes: assignment and attendance rate. Multimedia computers, projector, laser pointers, blackboard, chalks 1. Required books [1] TAN Wei, Safety Management Technology of Pressure Vessel. Beijing: Chemical Industrial Press, 2006 2. Reference books [1] LI Guocheng, LIU Renhuan. Safety Assessment of

Press, 2006

3. Other materials

Pressure Vessel. Hefei: Anhui Science and Technology

[3] CHEN Xu. Mechanical Foundation of Process Equipment. Beijing: Chemical Industrial Press, 2011

[1] PPT courseware (self-compiled)

Oniversity of Shanghai for Scie	
Computer Modeling Practice	
Competence field	Engineering Applications
Module designation	Computer Modeling Practice
Code, if applicable	11100571
Subtitle, if applicable	
Semester(s) in which the module	4 th semester
is taught	
Person responsible for the module	Professor SU Mingxu
Lecturer	Professor SU Mingxu
	Associate Professor WANG Zilong
	Lecturer YANG Jie(M)
	Lecturer CHEN Liu
	Lecturer HAO Xiaohong
	Lecturer WEN Zhenzhong
Language	Chinese
Relation to curriculum	This course belongs to Competence Fields of Engineering
	Applications. Before the start of this course, students have
	already taken basic programming, mathematical and
	engineering courses. Through this course, students can
	master mathematical methods, modeling methods and
	general data processing methods. This course is linked with
	previously acquired mathematical and programming
	knowledge and offers support for further study of data
	processing method and modeling. Meanwhile, with its
	computer practice, it also helps students complete future
	modules such as Professional Comprehensive Course
	Design, Internship and Bachelor Thesis.
Type of teaching, contact hours	Target students: undergraduates of energy and power
	engineering and related programs
	Type of teaching: theoretical teaching, computer practice
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 24 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 24 hours
	Size of class: No more than 60 people for theoretical
	teaching; no more than 60 people for computer practice
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Students with class attendance rate over 2/3, having
examination regulations	completed all computer practice and submitted practice

	nce and Technology report to lecturer
Recommended prerequisites	Calculus; Linear Algebra; Program Design and Practice
Module objectives/intended	Module objectives:
learning outcomes	 Knowledge: Basic methods of MATLAB; rules and features of programming; MATLAB in calculus; matrices and linear algebra; algebra and maximum optimization; data interpolation, function approximation and basic signal processing method, etc. Skills: Master applications such as numerical calculation, graphic image and file operation with MATLAB; understand and master basic mathematical problems and experiment data processing methods with MATLAB. Competences: Be able to solve mathematics modeling and engineering data processing problems through computer software with the help of acquired computer
Content	skills.
	 Part A. Theoretical teaching (24 contact hours; 18 self-study hours) Chapter 1 Basics of MATLAB Language (8 contact hours; 6 self-study hours) Language basics of MATLAB;** Basic arithmetical operation, process structure of MATLAB language; ** Function compiling and debugging; Two-dimensional graphics plotting, data file reading and writing. ** Chapter 2 Solving Calculus Problems with Computer(4 contact hours; 4 self-study hours) Analytic solution of calculus;* Numerical differential and integral.* Chapter 3 Solving Linear Algebra Problems with Computer(6 contact hours; 4 self-study hours) Special matrix input; * Basic analysis of matrix;** Solution of linear equations.** Chapter 4 Data Processing and Signal Analysis Fundamentals (6 contact hours; 4 self-study hours) Data interpolation and fitting, model fitting of known data, signal analysis fundamentals;**

	1) Computer practice of MATLAB programming (8 contact
	hours; 6 self-study hours)
	 A total of 12 programming exercises targeted at matrix
	structure, matrix operation and structure practice; **
	 Function compiling and call, drawing and file. **
	2) Computer practice of calculus problem solving(4 contact
	hours; 6 self-study hours)
	• A total of 8 programming exercises targeted at limit,
	derivative, integral, numerical integration and its
	application in engineering calculation.
	3) Computer practice of linear algebra problem (6 contact
	hours; 6 self-study hours)
	• A total of 8 programming exercises targeted at special
	matrix input, matrix analysis, matrix properties,
	determination and solving of linear equations. *
	4) Data processing and signal fundamentals (6 contact hours;
	6 self-study hours)
	• A total of 9 programming exercises targeted at one-
	dimensional and two-dimensional interpolation of data,
	polynomia and least-squares fitting; regression and
	confidence interval; time domain and frequency domain
	analysis. **
Study and examination	Usual performance accounts for 30%; final exam accounts
requirements and forms of	for 70%; exam is carried out on computer (open book exam,
examination	students can take prescribed paper materials)
Media employed	Multimedia computers, projector, laser pointers
Reading list	1. Required books
	[1]. Calculus Problems MATLAB Solving (2nd edition),
	XUE Dinyu, Tsinghua University Press, 2008
	2. Reference books
	[1]. MATLAB and Scientific Calculation (2 nd edition),
	WANG Moran, Electronic Industry Press, 2005
	[2]. MATLAB Principle and Engineering Application,
	Edward B Magrab et al. GAO Huisheng trans. Electronic
	Industry Press, 2002
	3. Experiment/computer practice instruction books
	[1] Self-compiled teaching materials
	4. Other materials
	[1]. PPT courseware (self-compiled)

Competence field	chnology of Power Engineering Engineering Applications
Module designation	Measurement and Control Technology of Power Engineering
Code, if applicable	11000111
Subtitle, if applicable	
Semester(s) in which the module	5 th semester
is taught	5 semester
Person responsible for the module	Professor CUI Guomin
•	Professor TAO Leren
Lecturer	
	Processor ZHANG Lixin
	Associate processor GUAN Xin
	Lecturer HUANG Xiuhui
	Lecturer WANG Zhiyuan
	Lecturer Li Zeqiu
Language	Chinese/English
Relation to curriculum	Measurement and Control Technology of Power Engineering is an engineering application course offered to undergraduates of energy and power engineering related programs. As a comprehensive course, measurement and control technology are integrated, it avoids the problem of separation between measurement and control, as measurement resorts to control as its objective and control uses measurement as its basis. The course is designed to allow students to master measurement methods for thermodynamic parameter as well as instrument/equipment and power equipment control technology. By integrating measurement and control, the course lays a foundation for further study of professional courses of Process Equipment and Control Engineering, realization of automatic operation, optimization and monitoring of thermal energy power equipments, and develop related scientific experimental research.
Type of teaching, contact hours	Target students: undergraduates of energy and power engineering related programs. Type of teaching: theoretical teaching, experiment teaching Theoretical teaching: 84 hours Experiment / practice teaching: 12 hours Size of class: No more than 60 people for theoretical teaching; no more than 5 people in each group for experiment.
Workload	Workload= 180 hours Contact hours = 96 hours Self-study hours = 84 hours

Measurement and Control Technology of Power Engineering

Credit points	6.0
Requirements according to the	Only students with class attendance rate over 2/3 are allowed
examination regulations	to take the exam.
Recommended prerequisites	College Physics; Introduction to Computer
Module objectives/intended	Module objectives:
learning outcomes	Measurement and Control Technology of Power
	Engineering is a specialized course offered to
	undergraduates of Process Equipment and Control
	Engineering program. With a focus on measurement
	methods of thermodynamic parameters,
	instrument/equipment and power equipment control
	technology, it is a basic course for realization of automatic
	operation, optimization and monitoring of thermal energy
	power equipment. It is also the basis of further scientific
	experimental research. Study of the course can help achieve
	the following objectives:
	• Knowledge: Master basic content of engineering
	measurement and control technology; familiar with
	basic principles and methods of thermal physical parameter measurement, and automatic control
	principle and technology.
	 Skills: Master certain experimental measurement skills
	and basic experimental data processing and error
	analysis methods; students are able to select or design a
	relatively proper non-electricity measurement system,
	use and check common instruments correctly, process
	and analyze measurement data, analyze and process
	technical problems of measurement system.
	• Competences: Be able to integrate and apply the above
	mentioned knowledge and skills; and be able to
	independently solve problems concerning automatic
	operation, optimization and monitoring of thermal
	energy power equipment, and carry out related
<u> </u>	scientific experimental research.
Content	Part A. Theoretical teaching (84 contact hours; 72 self-
	study hours)
	Chapter 1 Overview (3 contact hours; 3 self-study hours)
	Chapter 2 Error Theory and Data Processing (21 contact
	hours; 18 self-study hours)
	Random Error; Systematic Error; Gross Error; **
	Error Representation; Analysis of Massymmetry Uncertainty (Direct and
	 Analysis of Measurement Uncertainty (Direct and Indirect Measurement) :*
	Indirect Measurement) ;*

	• Data Processing of Combined Measurement.
	Chapter 3 Measurement Technology of Power Engineering
	Basic Quantity and Thermal Instrument (21 contact hours;
	18 self-study hours)
	Characteristics of Measurement System; **
	• Temperature Measurement and Instrument; *
	• Pressure and Speed Measurement and Instrument; *
	• Flow Measurement and Instrument. *
	Chapter 4 Fundamentals of Automatic Control (21 contact
	hours; 18 self-study hours)
	Automatic Control Principle; **
	• Simple Control System; *
	• Computer Control System;
	Chapter 5 Modern Measurement and Control Technology
	(18 contact hours; 15 self-study hours)
	• Modern Measurement and Control System;
	Measurement and Control System Design; *
	• Interference and Suppression Method for Measurement
	and Control System.
	Part B. Experiment teaching (12 contact hours; 12 self-
	study hours)
	• I/O channel interface experiment; master
	exchanging external signals with internal signals
	of computer; master concept of CAS interface
	address. (3 contact hours; 3 self-study hours)
	• Automatic pressure measurement experiment;
	master changing real physical quantity into
	virtual quantity which can be detected; master
	detecting virtual signals with A/D conversion
	interface board. (3 contact hours; 3 self-study
	hours)
	• Bulb brightness controlled with computer
	experiment; master output needed virtual signals
	with D/A conversion interface board; know how
	to control physical quantity with virtual signals.
	(3 contact hours; 3 self-study hours)
	• Control experiment of wind tunnel flow; review
	how to control physical quantity with A/D card
	measurement signal and D/A card; master
	controlling physical quantity by forming a
	complete control system. (3 contact hours; 3
	self-study hours)
Study and examination	4 assignments and 1 final exam; usual performance and

University of Shanghai for Scie	
requirements and forms of	attendance account for 30% of final score; final exam
examination	accounts for 70%; final exam is closed book written exam.
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, teacher's pointer, real objects (e.g. thermal couple;
	platinum resistance etc.)
Reading list	1. Required books
	[1] ZHANG Yingxin et al. Fundamentals of Non-electricity
	Measurement Technology (1 st edition), Beihang University
	Press, 2002.2
	2. Reference books
	[1] ZHAO Qingguo, CHEN Yongchang, XIA Guodong.
	Thermal Energy and Power Engineering Measurement
	Technology (1st edition), Chemistry Industry Press, 2006.6
	[2] ZHANG Hongjian, MENG Jianbo. Automatic Detection
	Technology and Equipment (1st edition), Chemistry Industry
	Press, 2004.7
	[3] YE Dajun. Thermal Machinery Testing Technology,
	Machinery Industry Press, 1981
	[4]MAN Hong, LIANG Yingchun et al. Automatic Control
	Principle, Tsing Hua University Press
	[5] Advances In Automatic Control, MihailVoicu,
	Massachusetts: Kluwer Acadamic Publishers, 2004
	[6] Temperature Measurement and Control, J.R. Leigh,
	London: Peter Peregrinus Ltd., 1988
	3. Other materials
	[1] PPT courseware (self-compiled)
	[2] Power engineering CAE experiment instruction books
	(school handout)

Process Principle and Equipment	
Competence field	Engineering Applications
Module designation	Process Principle and Equipment
Code, if applicable	11000371
Subtitle, if applicable	
Semester(s) in which the module	5 th semester
is taught	
Person responsible for the module	Associate Professor SU Wenxian
Lecturer	Associate Professor SU Wenxian
	Associate Professor YE Li
	Associate Professor XU BO
	Lecturer LI Zeqiu
	Lecturer SUN Li
Language	Chinese
Relation to curriculum	Process Principle and Equipment is one of the main courses
	for undergraduates of Process Equipment and Control
	Engineering program. Industrial processes in which raw
	materials are changed or separated into useful products,
	includes multi units. Process Principle and Equipment
	focuses on introduction of basic concepts and skills of unit
	operations, the structure and performance of the typical
	equipment, and its operation principle. Through the analysis
	of unit operations, to find a suitable operating condition,
	explore ways to strengthen the process and find a direction
	to improve the efficiency of process equipment.
Type of teaching, contact hours	Target students: junior of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching, experiment teaching
	Contact hours: 96 hours
	Of which
	Theoretical teaching: 76 hours
	Experiment / practice teaching: 20 hours
	Size of class: No more than 60 people for theoretical
	teaching, No more than 5 people in each group for
	Experiment.
Workload	Workload= 180 hours
	Contact hours = 96 hours
	Self-study hours = 84 hours
Credit points	6.0
Requirements according to the	Only students with class attendance rate over 2/3, assignment
examination regulations	completion rate over 2/3, and performing required
	experiments are allowed to take the exam.

Process Principle and Equipment

University of Shanghai for Scie	
Recommended prerequisites	College Physics; College Chemistry; Engineering Fluid
	Mechanics; Engineering Thermodynamics; Engineering
	Fluid Mechanics.
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to understand
	process principles and basic skills of unit operation and
	equipment through teaching and practice. Specific objectives
	include:
	• Knowledge: Master basic knowledge and theories
	required by unit operation such as Fluid Mechanics,
	Fluid Statics and its applications, and Heat Transfer;
	understand the operation principles of absorption,
	separation and rectification, etc.; Master basic
	principles and methods of major process analysis and
	equipment design of each field and applicable scope.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about process and equipment;
	understand engineering application of unit operations;
	acquire deep understanding of process phenomena.
	Master methods for process equipment and operation
	measurement; be able to analyze and solve all kinds of
	engineering unit operation problems including analysis
	and improvement of process equipment.
	• Competences: Students acquire practical abilities of
	operating unit equipment, explore ways to strengthen
	the process and increase the efficiency of the
	equipment, and the preliminary ability using the
	engineering point of view of analyzing and solving the
	problem of general process unit operations
Content	Part A. Theoretical teaching (76 contact hours; 68 self-
Content	study hours)
	Chapter 1 Introduction (4 contact hours; 4 self-study hours)
	 Unit operations; **
	 Unit system;
	 Basic Concepts;
	• Basic Concepts, Chapter 2 Agitation and Mixing Liquid (4 contact hours;4
	self-study hours)
	 Agitation of liquids; Planding and mixing;
	 Blending and mixing; Dispersion operations **
	• Dispersion operations. ** Charter 2 Element fluid threach the energy large large (8)
	Chapter 3 Flow of fluid through the granular layer (8
	contact hours; 8 self-study hours)
	Characterization of solid particles; *

 Properties of particulate masses; *
• Mixer for free flowing solids; **
Chapter 4 Settlement and fluidization of particles and (6
contact hours; 6 self-study hours)
• sieving; *
• settlement-separation; *
• filtration; **
• centrifugalization; *
• Fluidization; * *
Chapter 5 Heat transfer (6 contact hours; 4 self-study hours)
• Steady state conduction; *
• Unsteady state conduction; *
Heat exchange equipment. **
Chapter 6 Evaporation (8 contact hours; 6 self-study hours)
• Type of evaporators; *
Performance of tubular evaporators; * *
• Vapor recompression.
Chapter 7 Gas Absorption (8 contact hours; 8 self-study
hours)
• Principles of absorption; **
• Rate of absorption.
• Mass-transfer correlations.
Chapter 8 Liquid distillation (10 contact hours; 8 self-study
hours)
• Flash Distillation; *
• Continuous distillation with reflux; **
• Design of Sieve-plate columns;
• Rectification in packed towers;
• Batch Distillation.
Chapter 9 Gas-liquid mass transfer equipment (4 contact
hours; 4 self-study hours)
• Penetration theory of mass transfer; *
• Experimental measurement of mass transfer
coefficients;
• Coefficients for mass transfer through Known Areas.
Chapter 10 Liquid-liquid extraction (6 contact hours; 6 self-
study hours)
• Principles of liquid extraction; **
• Extraction equipment; *
• Supercritical fluid extraction.
Chapter 11 Drying of solids (12 contact hours; 10 self-study
hours)
• Principles of drying; *

	Drying equipment; **
	Part B. Experiment / practice teaching (20 experiment
	hours; 16 self-study hours)
	• Experimental determination of fluid flow
	resistance coefficient (2 experiment hours; 2
	self-study hours)
	• Experimental determination of centrifugal pump
	characteristic curve (2 experiment hours; 2 self- study hours)
	• Experimental determination of Constant
	pressure filtration constant (3 experiment hours; 2 self-study hours)
	 Experimental determination of convective heat-
	transfer coefficient (3 experiment hours; 2 self- study hours)
	 Experimental determination and online analysis
	of the total mass transfer coefficient of
	absorption and parsing. (3 experiment hours; 2
	self-study hours)
	• Experimental determination of the theoretical
	number of plate layer and the column efficiency
	(3 experiment hours; 2 self-study hours)
	• Operation and optimization of alcohol separation
	process. (4 experiment hours; 4 self-study hours)
Study and examination	Final score includes usual performance (15%); experiment
requirements and forms of	(15%), final exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate,
Media employed	Multimedia computers, projector, laser pointers, blackboard,
incula employed	chalks
Reading list	1. Required books
Reading list	[1] CHEN Minheng, CONG DEzi etc Principle of
	chemical engineering, 4 th edtion Beijing: Chemical
	Industry Press, 2015.8.
	2. Reference books
	[1] Jiang Weijun. Principle of chemical engineering,
	University of Tsinghua Press, 2001
	[2] He Hongchao, et al. Principle of chemical engineering.
	Beijing: Science Press, 2000.8
	[3] Warren L. McCabe, Unit Operation of Chemical
	Engineering ,Chemical Industry Press, 2006.9.
	3. Experiment/computer practice instruction books
	[1] Teaching materials (self-compiled)

4. Other materials
[1] PPT courseware (self-compiled)

Seal Technology of Process E	
Competence field	Engineering Applications
Module designation	Seal Technology of Process Equipment
Code, if applicable	11000410
Subtitle, if applicable	
Semester(s) in which the module	6 th semester
is taught	
Person responsible for the module	Associate Professor Xu Bo
Lecturer	Associate Professor Xu Bo
	Associate Professor Ye Li
	Lecturer SUN Li
	Lecturer YAN Weigang
Language	Chinese
Relation to curriculum	The seal technique of the process Equipment is an engineering application courses for undergraduates of
	Process Equipment and Control Engineering program.
	Theoretical knowledge in the curriculum is crucial for main
	devices applied in Process Equipment and Control
	Engineering. Based on engineering practice, the course
	systematically introduces basics of the seal technique. It
	focuses on introduction of the sealing problem, sealing
	method, classification, friction and wear of the process
	equipment, as well as, the flow of molecules, incompressible
	fluid flow and the compressible fluids. The content coverage
	the middle and low pressure equipment, piping gasket
	sealing, high pressure equipment, the flange connection
	technology, soft packing seal, sealing lips, mechanical seal,
	labyrinth seal, floating ring seal, centrifugal seal, spiral seal,
	and the classification and characteristics of pressure leak
	detection, leak detection method, vacuum leak detection
	method.
Type of teaching, contact hours	Target students: juniors of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching, experiment teaching
	Contact hours: 96 hours
	Of which
	Theoretical teaching: 96 hours
	Experiment / practice teaching: 0 hours
	Size of class: No more than 60 people for theoretical
	teaching
Workload	Workload= 180 hours
	Contact hours = 96 hours
	Self-study hours = 84 hours

Seal Technology of Process Equipment

University of Shanghai for Science and Technology		
Credit points	6.0	
Requirements according to the	Only students with class attendance rate over 2/3, assignment	
examination regulations	completion rate over 2/3, and performing required	
	experiments are allowed to take the exam.	
Recommended prerequisites	Calculus; Engineering Thermodynamics; Engineering Fluid	
	Mechanics.	
Module objectives/intended	Module objectives:	
learning outcomes	The task of this course is to enable students to understand	
	seal process and basic theories through teaching and practice.	
	Specific objectives include:	
	• Knowledge: Master basic knowledge and theories	
	required by seal technology such as sealing method,	
	classification, friction and wear of the process	
	equipment; understand the properties of seal in energy	
	and power engineering, seal characteristics and rules;	
	master various sealing methods, technology, equipment	
	and engineering application. Through this course,	
	students can understand the structures such pressure	
	equipment, piping gasket sealing, high pressure	
	equipment, the flange connection technology, soft	
	packing seal, sealing lips and mechanical seal etc.	
	• Skills: Students acquire basic theoretical and	
	specialized knowledge about seal engineering;	
	understand engineering application of seal; acquire	
	deep understanding of seal phenomena and mechanism;	
	be able to analyze and solve all kinds of engineering	
	seal problems including analysis and improvement of	
	existing seal methods.	
	• Competences: Students acquire practical abilities and	
	innovative thinking on the basis of seal theories and	
	engineering technology knowledge.	
Content	Part A. Theoretical teaching (96 contact hours; 84 self-	
	study hours)	
	Chapter 1 Introduction (6 contact hours; 6 self-study hours)	
	• Sealing, sealing, sealing process equipment	
	classification, leakage;	
	• Friction and wear problems.	
	Chapter 2 Flow of fluid in the seal gap (12 contact hours;	
	12 self-study hours)	
	 The flow of molecules; 	
	 Incompressible fluid flow; ** 	
	The flow of compressible fluids.	
	Chapter 3 Static seal for process equipment and piping (30	
	Supre e Suite seu foi process equipment and piping (50	

University of Shanghai for Sc	
	contact hours; 30 self-study hours)
	• The low pressure equipment and piping gasket sealing;
	• High pressure equipment;**
	• The flange connection;
	• Pressure injection agent sealing.
	Chapter 4 Dynamic seal of process machinery (30 contact
	hours; 24 self-study hours)
	• Soft packing seal, sealing lips;**
	• Mechanical seal, labyrinth seal;*
	• Floating ring seal;
	• Centrifugal seal;
	• Spiral seal etc.
	Chapter 5 leakage detection technology (18 contact hours;
	12 self-study hours)
	• The classification and characteristics of pressure leak
	detection; **
	• leak detection method;
	• vacuum leak detection method.
	Part B. Experiment / practice teaching (0 hours)
Study and examination	Final score includes: usual performance (30%); final exam
requirements and forms of	(closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate.
Media employed	Multimedia computers, projector, laser pointers, blackboard,
1 2	chalks
Reading list	1. Required books
	[1] Gu Yongquan. Practical sealing technology (1 edition).
	Beijing: Mechanical Industry Press, 2000
	[2] Gu Yongquan. Fluid seals (1 edition). Dongying:
	Petroleum University Press, 1999
	[3] Hu Guozhen. Chemical sealing technology (1 edition).
	Beijing: Chemical Industry Press, 1990
	2. Other materials
	[1] PPT courseware (self-compiled)

A H - T

Design of Process Equipment		
Competence field	Engineering Applications	
Module designation	Design of Process Equipment	
Code, if applicable	11001910	
	11001910	
Subtitle, if applicable Semester(s) in which the module	6 th semester	
is taught	o- semester	
Person responsible for the module	Associate Professor SU Wenxian	
Lecturer	Associate Professor SU Wenxian	
	Associate Professor XU Bo	
	Associate Professor YE Li	
	Lecturer LI Zeqiu	
	Lecturer WANG Zhiyuan	
Language	Chinese	
Relation to curriculum	Design of Process Equipment is one of the main courses for	
	undergraduates of Process Equipment and Control	
	Engineering program. The course about the classification of	
	pressure vessels, principles and characteristics of heat	
	exchangers, reactor, storage equipment and tower	
	equipment; pressure vessel stress distribution and	
	characteristics; influence on strength of material properties,	
	time and environment; design and calculation method are	
	also discussed of heat exchangers, reactor, storage	
	equipment and tower equipment; domestic and international	
	standards and regulations are also introduced.	
Type of teaching, contact hours	Target students: juniors of Process Equipment and Control	
	Engineering program	
	Type of teaching: theoretical teaching, experiment teaching	
	Contact hours: 96 hours	
	Of which	
	Theoretical teaching: 80 hours	
	Experiment / practice teaching: 16 hours	
	Size of class: No more than 60 people for theoretical	
	teaching	
Workload	Workload= 180 hours	
	Contact hours = 96 hours	
	Self-study hours = 84 hours	
Credit points	6.0	
Requirements according to the	Only students with class attendance rate over 2/3, assignment	
examination regulations	completion rate over 2/3, and performing required	
	experiments are allowed to take the exam.	
k		
Recommended prerequisites	Calculus; College Physics; College Chemistry; Engineering	

University of Shanghai for Scie	of Materials; Heat Transfer; Process Principle and	
	Equipment.	
Module objectives/intended	Module objectives:	
learning outcomes	The task of this course is to enable students to understand	
	combustion process and basic theories through teaching and	
	practice. Specific objectives include:	
	• Knowledge: From raw materials to products need a	
	series of physical, chemical or biological processing steps, master knowledge and theories required in this series of processing steps called process and the equipment completing the material crushing, mixing, storage, separation, heat transfer, reaction, and other operations. Understand pressure vessel, its safe and	
	reliable operation. Master the pressure vessel structure, stress analysis model, environment and time effect of material's properties and failure form and design method.	
	 Skills: Students acquire basic theoretical and specialized knowledge about materials selections, design, manufacture and test of the pressure vessels. Students understand engineering application of design methods and stress analysis; be able to analyze and solve all kinds of engineering design problems including analysis and improvement of existing pressure vessel, ensure the pressure vessel safety in the whole life cycle. Competences: Students acquire practical abilities and 	
	innovative thinking on the basis of the theory of Mechanics of Materials, Process Principle and Equipment; be able to analyze and design the structure of parts and whole equipment under economic, security and process constraints.	
Content	Part A. Theoretical teaching (80 contact hours; 74 self-	
	study hours)	
	Chapter 1 Pressure Vessel Introduction (4 contact hours;4	
	self-study hours)	
	Pressure vessel classification; **	
	• Pressure vessel codes and standards; *	
	Chapter 2 Stress Analysis of Pressure Vessels (36 contact	
	hours; 36 self-study hours)	
	• Stress in thin walled cylinders; **	
	Membrane theory; **	
	• Discontinuity analysis of thin walled cylinders; **	

•	Elastic stresses analysis of thick walled cylinder; **
•	Elastic-plastic stresses analysis of thick walled
	cylinder; **
•	Yield pressure and bursting pressure; *
•	Bending differential equation of flat plate; **
•	Stresses in circular plate; **
•	Bucking analysis of thin wall cylinder under external
	pressure; **
•	Critical pressure of other revolution shells; *
•	Typical local stresses; *
C	hapter 3 Pressure Vessel Materials and Properties Effected
	Environment and Time (4 contact hours; 4 self-study
	purs)
	Pressure vessel steels; **
	Nonferrous metal and nonmetal; **
•	Combustion products and calculation; **
•	Pressure vessel steel properties effected by fabrication;
	*
•	Pressure vessel steel properties effected by
	environment; *
•	Selection of pressure vessel materials. *
	hapter 4 Design of Pressure Vessels (16 contact hours; 16
	lf-study hours)
•	Design criterions; *
•	Cylinder design; *
•	Head design; **
•	Sealing device design; **
•	Opening and reinforcement; **
•	Support and manhole; **
•	Welded structure design; **
•	Pressure test; *
	hapter 5 Storage Equipment (4 contact hours; 4 self-study
	purs)
•	Horizontal storage tank; *
•	Design calculation of horizontal storage tank; **
•	Spherical storage tank; *
	hapter 6 Heat Exchanger (4 contact hours; 4 self-study
	ours)
•	Basic types of shell-and-tube heat exchangers; **
•	Shell-and tube heat exchanger structure; *
•	Tube sheet design; **
•	Expansion joint design; **
	Tubes vibration and protection; **

A H - T	
1800	

University of Shanghai for Scie	
	• Forced heat transfer; **
	Chapter 7 Tower (8 contact hours; 8 self-study hours)
	• Packed tower; *
	• Plate column; *
	Accessories; *
	• Strength design of tower; **
	• Vibration of tower; **
	Chapter 8 Reactors (4 contact hours; 4 self-study hours)
	Classification and characteristics of reactors; *
	Basic structure of mechanical agitated reactor; **
	Agitated Vessel; **
	Agitator Impeller; **
	• Shaft design; **
	• Sealing Device; **
	• Gearing; **
	Part B. Experiment / practice teaching (16 experiment
	hours; 10 self-study hours)
	• Experiment of the stress measurement of thin walled
	vessel with internal pressure (5 experiment hours; 3
	self-study hours)
	• Experiment of the unstability of external pressure thin
	wall vessel (5 experiment hours; 3 self-study hours)
	• Experiment of the bursting and testing of thick-walled
	cylinder (6 experiment hours; 4 self-study hours)
Study and examination	Final score includes usual performance (15%); experiment
requirements and forms of	(15%), final exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate.
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1] Zheng Jinyang, Design of Process Equipment. 4 th edtion,
	Chemical Industry Press, 2015
	2. Reference books
	[1] Wang Zhiwen, Design of Chemical Pressure Vessel.
	Chemical Industry Press,2005.
	[2] Chen Xu, Mechanics Foundation of Process Equipment.
	Chemical Industry Press, 2002.
	[3] James R. Farr. Guidebook for the Design of ASME
	Section VIII Pressure Vessels. Third Edition ASME Press,
	2005.
	3. Other materials

[1] PPT courseware (self-compiled)

Process Fluid Machinery		
Competence field	Engineering Applications	
Module designation	Process Fluid Machinery	
Code, if applicable	11000330	
Subtitle, if applicable		
Semester(s) in which the module	6 th semester	
is taught		
Person responsible for the module	Associate Professor ZHAO Jun	
Lecturer	Associate Professor ZHAO Jun	
	Associate Professor SAI Qingyi	
	Associate Professor SUN Xiaojing	
	Lecturer SUN Li	
Language	Chinese	
Relation to curriculum	Process Fluid Machinery is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Process Fluid Machinery is widely used in process engineering. Based on engineering practice, the course systematically introduces fluid machinery commonly used in process engineering, such as pump, compressor and centrifuge. It focuses on introduction of basic concepts of working principle, structure, operating characteristics, adjustment method, safety and reliability of process fluid machinery. New achievements in process fluid machinery in recent years are also introduced. Basic theories related in Process Fluid Machinery, regarding Engineering Fluid Mechanics, Engineering Thermodynamics and Heat Transfer, are applied in analyzing the thermal performance of working process. It lays a foundation for controlling the working process of fluid machinery, application of fluid machinery in engineering, design and operation of process fluid machinery.	
Type of teaching, contact hours	Target students: Juniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching, experiment teaching Contact hours: 96 hours Of which Theoretical teaching: 76 hours Experiment / practice teaching: 20 hours Size of class: No more than 60 people for theoretical teaching	

900				
	University of	Shanghai tor	Science and	Tochnology
	University UI	Juangharion	Julence and	rechnology

University of Shanghai for Science and Technology		
Workload	Workload= 180 hours	
	Contact hours = 96 hours	
	Self-study hours = 84 hours	
Credit points	6.0	
Requirements according to the	Only students with class attendance rate over 2/3, assignment	
examination regulations	completion rate over 2/3, and performing required	
	experiments are allowed to take the exam.	
Recommended prerequisites	Calculus; College Physics; College Chemistry; Theoretical	
	Mechanics; Engineering Thermodynamics; Engineering	
	Fluid Mechanics; Heat Transfer.	
Module objectives/intended	Module objectives:	
learning outcomes	The task of this course is to enable students to understand	
	structure, working process, operating performance and	
	adjustment method of process fluid machinery through	
	teaching and practice. Specific objectives include:	
	• Knowledge: Master basic knowledge and theories	
	required by Process Fluid Machinery such as	
	Engineering Thermodynamics, Engineering Fluid	
	Mechanics and Heat Transfer; understand the	
	phenomena of energy conversion and transmission,	
	heat transfer in fluid delivery; master the components	
	and operating mechanisms of pump, compressor and	
	centrifuge; understand what factors affect the fluid	
	machinery performance; master the performance	
	parameters and curves, and judge the scope of	
	application through them.	
	• Skills: Students acquire basic theoretical and	
	specialized knowledge about Process Fluid Machinery;	
	understand engineering application of fluid machinery;	
	acquire deep understanding of energy conversion	
	mechanism; master methods for adjustment of fluid	
	machinery operation; be able to analyze and solve all	
	kinds of engineering problems including analysis and	
	improvement of existing fluid machinery adjustment	
	methods, increase the operating efficiency; master the	
	selection method of fluid machinery.	
	 Competences: Students acquire practical abilities and 	
	innovative thinking on the basis of fluid machinery	
	theories and engineering technology knowledge.	
Content	Part A. Theoretical teaching (76 contact hours; 68 self-	
Content	study hours)	
	Chapter 1 Introduction (7 contact hours; 4 self-study hours)	
	 Definition, classification and use of process fluid 	
	• Definition, classification and use of process fluid	

	machinery;	
•	Application status and development trend of process	
	fluid machinery.	
C	Chapter 2 Displacement Compressor (17 contact hours;	
12	12 self-study hours)	
•	Working principle of displacement compressor;**	
•	Rotary Compressor 1;	
•	Screw Compressor; **	
•	Roots Blower;	
•	Scroll Compressor;	
•	Thermal properties of displacement compressor;	
•	Adjustment and Control of displacement compressor.	
C	hapter 3 Centrifugal Compressor (16 contact hours; 16	
se	lf-study hours)	
•	Structure of centrifugal compressor; *	
•	Working principle of centrifugal compressor; **	
•	Operating performance	
•	Adjustment and control. **	
•	Safe and reliable operation; *	
•	Selection. *	
C	hapter 4 Pump (18 contact hours; 18 self-study hours)	
•	Classification and use of pump; *	
•	Structure of centrifugal pump; **	
•	Working principle of centrifugal pump;	
•	Operating characteristics of centrifugal pump;	
•	Other types of pumps;	
•	Pump selection.	
C	hapter 5 Centrifuge (18 contact hours; 18 self-study hours)	
•	Structure of Centrifuge; **	
•	Working principle of Centrifuge; *	
•	Filtration Centrifuge;	
•	Sedimentation Centrifuge;	
•	Selection of Centrifuge.	
Pa	art B.Experiment / practice teaching (20 experiment	
ho	ours; 16 self-study hours)	
•	Experimental analysis of pump performance (5	
	experiment hours; 4 self-study hours)	
•	Screw compressor performance experiment (6	
	experiment hours; 4 self-study hours)	
•	Experimental analysis of centrifugal compressor	
	performance (5 experiment hours; 4 self-study	
	hours)	
•	Cyclone separator experiment (4 experiment	

, , , , , , , , , , , , , , , , , , , ,	hours; 4 self-study hours)	
Study and examination	Final score includes: usual performance (20%); experiment	
requirements and forms of	(10%), final exam (closed-book written examination) (70%)	
examination	Usual performance includes: assignment, attendance rate,	
	and computer practice	
	Experiment score includes: experiment report (100%)	
Media employed	Multimedia computers, projector, laser pointers, blackboard,	
	chalks	
Reading list	1. Required books	
	[1] KANG Yong, ZHANG Jianwei, LI Guishui. Process	
	Fluid Machinery. Beijing: Chemical Industry Press, 2008	
	2. Reference books	
	[1] LI Yun, JIANG Peizheng. Process Fluid Machinery.	
	Beijing: Chemical Industry Press, 2008	
	[2] XING Ziwen. Theory, Design and Application of Scroll	
	Compressor. Beijing: China Measuring Press, 2008	
	[3] Christopher Earls Brennen. Hydrodynamics of Pumps.	
	Zhenjiang: Jiangsu University Press, 2012	
	3. Experiment/computer practice instruction books	
	[1] Teaching materials (self-compiled)	
	4. Other materials	
	[1] PPT courseware (self-compiled)	

Competence field	Engineering Applications
Module designation	Control Technology and Application of Process Equipment
Code, if applicable	11000380
Subtitle, if applicable	
Semester(s) in which the	6 th semester
module is taught	
Person responsible for the	Associate Professor HU Zhuohuan
module	
Lecturer	Professor ZHANG Lixin
	Lecturer SUN Li
	Lecturer Li Zeqiu
	Lecturer YE Li
	Lecturer WANG Zhiyuan
Language	Chinese
Relation to curriculum	This course highlights the characteristics of Process
	Equipment and Control Engineering. Students can master
	basic knowledge of control theories as well as participate in
	practice and application. Main contents include basic
	concepts of process control systems; basic measurement
	methods of temperature, velocity, pressure and flow rate;
	basic principles and applications of transducer, regulator,
	actuator and other process control devices; PLC
	programming languages and practices and application
	schemes of typical process control system. This course
	contains basic concepts of automatic control, mathematical
	models of control system such as open and closed loop
	transfer functions, time domain analysis method, root locus
	technique, frequency domain analysis of control system,
	design and calibration of control system and application
	schemes of typical process control system such as PLC
	control system and PID control system.
Type of teaching, contact hours	Target students: juniors of Process Equipment and Control
	Engineering program.
	Type of teaching: theoretical teaching, Experiment / practice
	teaching
	Contact hours: 48 hours
	Of which
	Theoretical teaching: 42 hours
	Experiment / practice teaching: 6 hours
	Size of class: No more than 60 people for theoretical
	teaching

Control Technology and Application of Process Equipment

<u> </u>				
900			<u> </u>	
	I Iniversity of	t Shanghai tor	' Science a	nd Technology
		i Shunghui ioi	Juichiec u	

University of Shanghai for Scie		
Workload	Workload= 90 hours	
	Contact hours $= 48$ hours	
	Self-study hours = 42 hours	
Credit points	3.0	
Requirements according to the	Only students with class attendance rate over 2/3 and	
examination regulations	assignment completion rate over 2/3 are allowed to take the	
	exam.	
Recommended prerequisites	Calculus; Linear Algebra; Electrical Engineering and	
	Electronics ; Engineering Thermodynamics; Heat Transfer;	
	Measurement and Control Technology of Power	
	Engineering; Process Control Theory.	
Module objectives/intended	Module objectives:	
learning outcomes	The task of this course is to enable students to understand the	
	static and dynamic characteristics of process flow and	
	production process and build a fine foundation for future	
	practical work and scientific research:	
	• Knowledge: Master basic knowledge of process	
	equipment and control as well as basic method of error	
	analysis and data processing; Master process detection	
	technology principle;	
	 Skills: realize methods, principles and instruments of 	
	measuring pressure, temperature, flow rate and liquid	
	level; understand the basic principle of process control	
	device; be able to analyze and design the typical process	
	control system.	
	• Competence: Obtain a broad knowledge of control	
	techniques for process equipment; master basic method	
	of system integration of computer measurement and	
	control techniques for process equipment; acquire a	
	certain practical application ability.	
Content	Part A. Theoretical teaching (42 contact hours; 36 self-	
Content	study hours)	
	Chapter 1 Basic Concepts of Control System (8 contact	
	hours; 8 self-study hours)	
	 Composition and classification of control system; Diagram of pipeline and instrumentation;** 	
	• Performance index and transition process of control	
	systems;*	
	• Missions and requirements of process equipment and	
	control.	
	Chapter 2 Basis of Process Equipment and Control (8 contact hours) 8 colf study hours)	
	contact hours; 8 self-study hours)	
	• Signal system, transmission mode and anti-explosion	

	basic knowledge of process control device;**
	• Characteristics of controlled object;*
	• Complex control system.
	Chapter 3 Process Detection Technology (8 contact hours;
	6 self-study hours)
	• Basic knowledge of measurement and error;**
	• Main performance index of instruments;**
	• Basic principles and methods of measuring pressure,
	temperature, flow rate, liquid level;**
	• New progress in process detection technology.
	Chapter 4 Process Control Device (6 contact hours; 4 self-
	study hours)
	• Basic principles of various process control device;
	Process control function.*
	Chapter 5 PLC (8 contact hours; 6 self-study hours)
	• PLC programming language and manner of working;**
	 Basic composition and performance index;
	• Basic and application instructions;**
	• Common methods of control system design;*
	• application schemes of typical process control system
	• Open and closed loop frequency characteristics of linear
	systems;**
	 Analysis of absolute stability of system;**
	 Calculation of relative stability index;**
	 Relationship between frequency domain and time
	domain index.**
	Chapter 6 Application Schemes Of Typical Process Control
	System (4 contact hours; 4 self-study hours)
	 Basic steps of process control system design;
	 Typical control schemes of heat exchange reactor, fluid
	conveying equipment and reactor control.*
	Part B. Experiment / practice teaching (6 experiment
	hours; 6 self-study hours)
	 Training process simulation of PLC control system in
	computer operation (6 experiment hours; 6 self-study
	hours)
Study and examination	Final score includes: usual performance (20%); experiment
requirements and forms of	(10%); final exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate.
	e sua performance metudes, assignment, attenuance fate.
Media employed	Multimedia computers, projector, laser pointers, blackboard,
Media employed	
	chalks

Reading list	1. Required books
	[1] WANG Yi, ZHANG Zaoxiao. Application and Control
	Techniques for Process Equipment. Chemical Industry
	Press, 2007
	2. Reference books
	[1] LIU Jianqing. Electrical Control and PLC Technology.
	Beijing: National Defence Industry Press, 2007
	[2] WANG Ziyan. Chemical Process Control and
	Instrument. Xi'an: Xi'an Jiaotong University Press, 1998

Chemical Drawing		
Competence field	Engineering Applications	
Module designation	Chemical Drawing	
Code, if applicable	11000490	
Subtitle, if applicable		
Semester(s) in which the module	6 th semester	
is taught		
Person responsible for the	Professor GUO Xueyan	
module		
Lecturer	Associate Professor YE ZHou	
	Associate Professor SUN Xiaojing	
	Associate Professor XU Bo	
	Lecturer SUN Li	
	Lecturer WANG Zhiyuan	
Language	Chinese	
Relation to curriculum	Chemical Drawing is one of enginnerinig application courses	
	for undergraduates of Process Equipment and Control	
	Engineering program. Theoretical knowledge in Chemical	
	Drawing is crucial for main devices applied in Process	
	Equipment and Control Engineering, such as pressure vessel,	
	heat exchanger, tower, and reactor. Based on engineering	
	practice, the course systematically introduces chemical	
	equipment's structure and expression characteristics. It	
	focuses on the reading and drawing of typical process	
	equipment drawing, including Chemical process diagram,	
	equipment layout, and piping arrangement drawing.	
Type of teaching, contact	Target students: Junior of Process Equipment and Control	
hours	Engineering program	
	Type of teaching: theoretical teaching	
	Contact hours: 48 hours	
	Of which	
	Theoretical teaching: 48 hours	
	Size of class: No more than 60 people for theoretical	
	teaching	
Workload	Workload= 90 hours	
	Contact hours = 48 hours	
	Self-study hours = 42 hours	
Credit points	3.0	
Requirements according to	Only students with class attendance rate over 2/3 and	
the examination regulations	assignment completion rate over $2/3$ are allowed to take the	
	exam.	
L		

University of Shanghai for Sc	
Recommended prerequisites	Fundamentals of Engineering Drawing; Mechancial
	Engineering Drawing; Mechanics of Materials;
	Fundamentals of Engineering Materials; Process Principle
	and Equipment.
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to understand
	basic theories and methods through teaching and practice.
	Specific objectives include:
	• Knowledge: Master the basic structure and expression
	characteristics of general chemical equipment;
	understand the technical requirements of chemical
	drawing; master the basic method to draw.
	• Skills: Students acquire basic theoretical and specialized
	knowledge about chemical drawing; understand
	engineering application of chemical drawing; master
	methods to read and draw chemical equipment drawing
	and the chemical process diagram; be able to analyze
	and solve all kinds of problems during the drawing of
	chemical equipment.
	• Competences: Students acquire practical abilities and
	innovative thinking on the basis of chemical
	engineering theories and engineering technology
	knowledge.
~	
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
Content	Part A. Theoretical teaching (48 contact hours; 42 self- study hours)
Content	Part A. Theoretical teaching (48 contact hours; 42 self- study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours)
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. **
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours)
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours)
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; * Dimension of chemical equipment drawing; **
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; *
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; * Dimension of chemical equipment drawing; **
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; * Dimension of chemical equipment drawing; ** Technical requirements of chemical equipment drawing. **
Content	 Part A. Theoretical teaching (48 contact hours; 42 self-study hours) Chapter 1 Introduction (9 contact hours; 6 self-study hours) Common chemical equipment; * Typical chemical equipment. ** Chapter 2 Basic knowledge of chemical equipment (6 contact hours; 6 self-study hours) Classification of chemical equipment; * Basic drawing principle of chemical equipment drawings; * * Column of chemical equipment drawing. * Chapter 3 Expression characteristics of chemical equipment (3 contact hours; 3 self-study hours) Basic expression of chemical equipment; * Dimension of chemical equipment drawing; **

1	H × r
11	तात्र
10	270

University of Shanghai for Science and Technology		
	• Expression of welding line. **	
	Chapter 5 Drawing of chemical equipment drawing (3	
	contact hours; 3 self-study hours)	
	• Design conditions of equipment; *	
	• View selection of chemical equipment; *	
	• Methods and steps of drawing chemical equipment	
	drawings. **	
	Chapter 6 Chemical equipment drawing (3 contact hours;	
	3 self-study hours)	
	• Basic requirement of reading chemical equipment	
	drawing; *	
	• Methods and steps of reading chemical equipment	
	drawing. **	
	Chapter 7 Chemical process flow diagram (3 contact	
	hours; 3 self-study hours)	
	 Flow chart of program; ** 	
	 Material balance diagram; ** 	
	 Construction process flow diagram. ** 	
	Chapter 8 Introduction of building drawing (3 contact	
	hours; 3 self-study hours)	
	 Basic content and characteristic of building drawing; * 	
	 International standards; * 	
	Reading method. **	
	Chapter 9 Chemical equipment layout (6 contact hours; 3	
	self-study hours)	
	 Functions and contents of equipment layout; * 	
	 Characteristic of equipment layout; * 	
	• Drawing and reading of equipment layout. **	
	Chapter 10 Piping arrangement drawing (9 contact hours; 6	
	self-study hours)	
	• Functions and contents of Piping arrangement drawing;	
	*	
	• Characteristic of piping layout arrangement drawing; *	
	 Drawing and reading of arrangement drawing. ** 	
	Part B. Experiment / practice teaching (0 hour)	
Study and examination	Final score includes: usual performance (30%); final exam	
requirements and forms of	(opened-book written examination) (70%)	
examination	Usual performance includes: assignment and attendance	
	rate.	
Media employed	Multimedia computers, projector, laser pointers, blackboard,	
nicala employed	chalks	
Reading list	1. Required books:	
	[1] ZHENG Xiaomei, WEI Chongguang. Chemical	

Oniversity of shanghar for science and recimology	
	Drawing. Beijing: Chemical Industry Press, 2008
	2. Referencebooks
	[1]CAI Jining, ZHANG Qiuxiang. Foundation Curriculum
	Design Instruction of Chemical Equipment. Beijing:
	Chemical Industry Press, 2000
	[2] ZHANG Qiuxiang, CAI Jining. Chemical Drawing.
	Beijing: Chemical Industry Press, 2015.
	[3]DONG Zhenke, LU Dayong. Chemical Drawing.
	Beijing: Chemical Industry Press, 2014
	3. Other materials
	[1] PPT courseware (self-compiled)

Fabrication and Examination of Process Equipment		
Competence field	Engineering Applications	
Module designation	Fabrication and Examination of Process Equipment	
Code, if applicable	11001880	
Subtitle, if applicable		
Semester(s) in which the module	7 th semester	
is taught		
Person responsible for the module	Associate Professor YE Li	
Lecturer	Associate Professor YE Li	
	Associate Professor SU Wenxian	
	Lecturer YANG Jie(M)	
	Lecturer WANG Zhiyuan	
	Lecturer Xu Jiayin	
Language	Chinese	
Relation to curriculum	Fabrication and Examination of Process Equipment is a very important and basic course, which integrates theory with practice. It focuses on introduction of different examination	
	methods, fabrication processes and quality requirements. In this course, students can learn the massive knowledge of process equipment, which is useful for students to engage in	
	related work. Students can start this course after completing courses including: Design of Process Equipment, Process	
	Fluid Machinery, Control Technology and Application of Process Equipment and Safety Technology of Process Equipment.	
Type of teaching, contact hours	Target students: seniors of Process Equipment and Control	
	Engineering program	
	Type of teaching: theoretical teaching, experiment teaching	
	Contact hours: 96 hours	
	Of which:	
	Theoretical teaching: 80 hours	
	Experiment teaching: 16 hours	
	Size of class: no more than 60 people for theoretical	
	teaching; no more than 60 people for experiment teaching	
Workload	Workload= 180 hours	
	Contact hours = 96 hours	
	Self-study hours = 84 hours	
Credit points	6.0	
Requirements according to the	Only students with class attendance rate over 2/3, assignment	
examination regulations	completion rate over 2/3, and performing required	
	experiments are allowed to take the exam.	
Recommended prerequisites	Design of Process Equipment; Process Fluid Machinery;	
Protoquisitos	of the internet of the second se	

Fabrication and Examination of Process Equipment

University of Shanghai for	
	Control Technology and Application of Process Equipment;
	Safety Technology of Process Equipment.
Module objectives/intend	
learning outcomes	The task of this course is to enable students to master the
	fabrication and examination method of process equipment
	through teaching and practice. Specific objectives include:
	• Knowledge: The examination method of process
	equipment, such as X-ray inspection, γ -ray inspection,
	ultrasonic inspection and penetrant inspection; the
	fabrication process of process equipment, such as welding of
	steel pressure vessels, fabrication preparation of pressurized
	shell, forming process and typical pressure vessel; the quality
	requirements for process manufacturing, such as mechanical
	working precision, machined surface quality and assembly
	process.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about fabrication and examination
	method of process equipment; understand the principles of
	different examination methods; master fabrication methods
	of common pressure vessel. Be able to analyze and solve all
	kinds of engineering problems including select fabrication
	and examination methods for different process equipment;
	design the mechanical working precision, and so on.
	• Competences: Students acquire practical abilities and
	innovative thinking on the basis of studying fabrication and
	examination theories.
Content	Part A. Theoretical teaching (80 contact hours; 72 self-
	study hours)
	Chapter 1 Introduction (4 contact hours; 4 self-study
	hours)
	• Development history of process equipment;
	• Development of fabrication technology.
	Chapter 2 Periodic inspection of equipment fabrication (6
	contact hours; 4 self-study hours)
	 Periodic inspection;*
	 Routine inspection.*
	Chapter 3 Radiographic inspection and defect grade
	evaluation (8 contact hours; 6 self-study hours)
	 X-ray inspection and γ-ray inspection;*
	 Principle and preparation of Radiographic
	inspection;**
	 Defect grade evaluation;**
	• Safety protection.

I

Chapter 4 Ultrasonic inspection and defect grade
evaluation (8 contact hours; 6 self-study hours)
• Basic knowledge of Ultrasonic inspection;*
• Defect detection by Ultrasonic inspection;**
• Defect grade evaluation.*
Chapter 5 Surface inspection and defect grade evaluation
(8 contact hours; 6 self-study hours)
• Magnetic particle inspection;**
• Penetrant inspection.*
Chapter 6 Welding of steel pressure vessels (6 contact
hours; 4 self-study hours)
• Welded joint;**
• Welding method and welding technology;*
• Welding of common steel;*
• Post-weld heat treatment.*
Chapter 7 Fabrication preparation of pressurized shell (6
contact hours; 6 self-study hours)
• Pretreatment of steel; **
• Underlined.
Chapter 8 Forming process (8 contact hours; 8 self-study
hours)
• Shell Ring;*
• Head;*
• Tube.*
Chapter 9 Typical pressure vessel (6 contact hours; 6 self-
study hours)
• Shell and tube heat exchangers;*
• Fabrication of high pressure vessels. *
Chapter 10 Mechanical Working Precision (8 contact
hours; 8 self-study hours)
• Geometric error of process system;**
• Force deformation of process system;**
• Thermal deformation of process system;*
• Deformation caused by residual stress.*
Chapter 11 Machined surface quality (6 contact hours; 6
self-study hours)
• Factors affecting the surface quality of machined
surface;*
• Surface strengthening technology.*
Chapter 12 Assembly process (6 contact hours; 8 self-
study hours)
• Assembly dimension chain; **
• Assembly method.

	Part B. Experiment teaching (16 experiment hours; 12
	self-study hours)
	• Experimental study on stress measurement of thin
	walled vessel with internal pressure (8 experiment hours; 6
	self-study hours)
	• Experimental study on failure of external pressure
	thin wall vessel (8 experiment hours; 6 self-study hours)
Study and examination	Final score includes: usual performance (20%); experiment
requirements and forms of	(10%), final exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate,
	and computer practice
	Experiment score includes: experiment report (50%); and
	experiment exam (50%)
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1]. Fabrication and Examination of Process Equipment,
	ZOU Guanghua, Chemical Industry Press, 2011
	2. Reference books
	[1]. Process equipment control technology and Application,
	WANG Yi, ZHANG Zaoxiao, Chemical Industry Press,
	2010
	[2]. Process control engineering, YU Jintao, JIANG Weisun,
	Electronics Industry Press, 2007
	[3]. Process Equipment Manufacturing Technology, WANG
	Wenyou, China Petrochemical Press, 2009
	3. Experiment practice instruction books
	[1] Teaching materials (self-compiled)
	4. Other materials
	[1]. PPT courseware (self-compiled)

Electives

Chemical Reaction Engineering

Competence field	Electives
Module designation	Chemical Reaction Engineering
Code, if applicable	11000430
Subtitle, if applicable	
Semester(s) in which the module	6 th semester
is taught	
Person responsible for the module	Professor LI Ling
Lecturer	Associate Professor YE Li
	Lecturer XU Jiayin
	Lecturer Wang Zhiyuan
	Lecturer YANG Jie(F)
Language	Chinese & English
Relation to curriculum	Chemical Reaction Engineering is an elective course
	required for undergraduates of Process Equipment and
	Control Engineering program. It aims to study the change
	regulations and transfer laws, as well as process rate of
	engineering reaction processes. It lays a foundation for the
	optimal design and optimal operation of reactors, which can
	serve as the foundation for following elective courses such
	as Process Analysis and Integration, Water Treatment
	Engineering; pratical raining course, such as Professional
	Comprehensive Course Design, Innovation and
	Entrepreneurship Project Training, Internship, and Bachelor
	Thesis.
Type of teaching, contact hours	Target students: juniors of Process Equipment and Control
	Engineering
	Type of teaching: theoretical teaching
	Contact hours: 48 hours
	Size of class: No more than 60 people
Workload	Workload= 90 hours
	Contact hours $= 48$ hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3, assignment
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	Engineering Thermodynamics; Engineering Fluid
	Mechanics; Heat Transfer; Process Principle and
	Equipments.
Module objectives/intended	Module objectives:

learning outcomes	The task of this course is to enable students to understand
	basic theories of chemical reaction dynamics and macro-
	reaction dynamics which are important for reactor design
	and optimization, and obtain engineering experiences related
	to experiments, enlargement and controlling. Specific
	objectives include:
	• Knowledge: Master basic knowledge and theories
	required by chemical reaction technology such as
	deducing of reaction intrinsic kinetics, confirming of
	reaction optimum temperature, combinatorial
	calculation among ideal and non-ideal flow models, and
	determination of reactor kinetic parameters.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about optimal design and
	optimal operation of reactors; understand engineering
	application of catalytic reaction; acquire deep
	understanding of catalytic reaction phenomena and
	catalytic reaction mechanism; be able to analyze and
	solve all kinds of engineering problems including
	analysis and improvement of existing reaction methods,
	increase raw material utilization efficiency, etc.
	• Competences: Students acquire practical abilities and
	innovative thinking on the basis of reaction theories and
	engineering technology knowledge.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1 Introduction (4 contact hours; 2 self-study hours)
	 Classification of chemical reactions and reactors; Matheda of reactor enlargement and model
	• Methods of reactor enlargement and model
	construction;
	• Scientific application and development of chemical reaction engineering.
	reaction engineering.
	Chapter 2 Basic theories of chemical reaction dynamics (8
	contact hours; 8 self-study hours)
	• Chemical reaction rate, reaction rate equations;**
	• Order of reaction, batch reaction system, continuous
	reaction system and multiple reaction system;*
	• Intrinsic kinetics of different reactions, analysis of key
	components.**
	• Influences of temperature on reaction rate and reaction
	selectivity. *
	Chapter 3 Ideal flow reactors (8 contact hours; 8 self-study
	hours)

	• Flow model of reactors;*
	• Batch reactors, continuous stirred tank reactors, and
	piston flow reactors;**
	• Multistage CSTR in series and its optimization;**
	• Combustion temperature calculation;*
	• Combination of ideal reactors, selectivity of multiple
	reactions in ideal reactors;*
	• Optimum selection of homogeneous phase reactors.*
	Chapter 4 Non-ideal flow reactors (10 contact hours; 10
	self-study hours)
	• Mixed state of materials in continuous reactors and its
	influences on reactor operation performances;
	• Conception and experimental determination method
	of residence time distribution;**
	• Non-ideal flow reactor models. **
	Chapter 5 Macro mechanics of gas-solid catalytic reaction
	(8 contact hours; 6 self-study hours)
	• Macro reaction process of gas-solid catalytic
	reaction;**
	• Structure and physical properties of porous catalyst;*
	• Gas diffusion in porous catalyst, influences of gas
	diffusion on reaction rate of gas-solid;**
	• Mass transfer and heat transfer between particles and
	fluid;*
	• Intrinsic reaction rate and overall reaction rate
	equations of gas-solid catalytic reaction.**
	Chapter 6 Gas-solid catalytic reactor (6 contact hours; 4
	self-study hours)
	• Classification of packed catalytic reactors;*
	• Flow and heat properties of packed catalytic reactors;**
	• Model equations of packed catalytic reactors.
	Chapter 7 Measuring method of kinetic parameters (4
	contact hours; 4 self-study hours)
	• Basic knowledge about measuring method of kinetic
	parameters;
	 Integration, differentiation and half-life methods.*
	Part B. Experiment teaching (0 hour)
Study and examination	Final score includes usual performance (30%); final exam
requirements and forms of	(closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate,
	and computer practice
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks

Reading list	1. Required books
	[1] WANG Anjie. Chemical Reaction Engineering. Beijing:
	Chemical Industry Press, 2010
	2. Reference books
	[1] H.Scott Fogler. Chemical Reaction Engineering.
	Beijing: Chemical Industry Press, 2005
	[2] ZHU Bincheng. Chemical Reaction Engineering.
	Beijing: Chemical Industry Press, 2002
	[3] YUAN Weikang. Chemical Reaction Engineering
	Analysis. Shanghai: East China University of Science and
	Technology Press, 2000
	3. Other materials
	[1] PPT courseware (self-compiled)

Chemical Process Technique

Chemical Process Technique	
Competence field	Electives
Module designation	Chemical Process Technique
Code, if applicable	11000480
Subtitle, if applicable	
Semester(s) in which the module	6 th semester
is taught	
Person responsible for the module	Professor LU Mei
Lecturer	Associate Professor Ye Li
	Lecturer XU Jiayin
	Lecturer Wang Zhiyuan
	Lecturer Yan Weigang
Language	Chinese
Relation to curriculum Type of teaching, contact hours	Chemical Process Technique is an elective course for junior students of Process Equipment and Control Engineering program. It aims to study the basic theories of process productions and chemical reaction process. Make some introduction to general reactions, inorganic reactions, organic reactions, coal chemical reactions and fine chemical reactions. It lays a foundation for further study of chemical engineering processes related courses, such as elective courses (Process Analysis and Integration, Water Treatment Engineering); pratical raining course (Professional Comprehensive Course Design, Innovation and Entrepreneurship Project Training, Internship), and Bachelor Thesis. Target students: juniors of Process Equipment and Control Engineering
	Type of teaching: theoretical teaching Contact hours: 48 hours Size of class: No more than 60 people for theoretical teaching
Workload	Workload= 90 hours Contact hours = 48 hours Self-study hours = 42 hours
Credit points	3.0
Requirements according to the examination regulations	Only students with class attendance rate over 2/3, assignment completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	College Chemistry; Process Principle and Equipment.
Module objectives/intended learning outcomes	Module objectives: The task of this course is to enable students to understand
Icarining outcomes	

ሧ

	chemical technology and basic theories through teaching.
S	Specific objectives include:
•	• Knowledge: Master basic knowledge and theories
	required by chemical technology such as general
	reaction units, inorganic reaction units, organic
	reaction units, coal chemical reaction units and fine
	chemical reaction units;
	• Skills: Students acquire basic theoretical and
	specialized knowledge about chemical engineering, be
	able to analyze and solve kinds of engineering problems
	including analysis and improvement of existing
	reaction methods, increase raw material utilization
	efficiency, etc.
•	• Competences: Students acquire practical abilities and
	innovative thinking on technology design,
	systems integration and system development on various
	chemical reaction units.
	Part A. Theoretical teaching (48 contact hours; 42 self-
	tudy hours)
	Chapter 1 Introduction (3 contact hours; 3 self-study hours)
•	• Development history of chemical technologies;
•	• Scientific application of chemical technologies.
	Chapter 2 Chemical resources and the handling processes
	9 contact hours; 9 self-study hours)
•	 Classifications of Chemical ore;*
•	• Coal and its handling process;**
•	Petroleum and its handling process;**
•	Natural gas and its handling process.**
	Chapter 3 General reaction units (9 contact hours; 6 self-
s	tudy hours)
•	• Oxidation reaction units;**
•	• Hydrogenation and dehydrogenation reaction units;*
•	 Electrolyze reaction units.*
	Chapter 4 Inorganic reaction units (9 contact hours; 9 self-
s	tudy hours)
•	• Calcination, incineration and sintering;*
•	Leaching;*
•	Double decomposition. *
	Chapter 5 Organic reaction units, (9 contact hours; 6 self-
	tudy hours)
	• Hydrocarbon pyrolysis;*
	Chloration;

Т

University of Shanghai for Sc	University of Shanghai for Science and Technology	
	• Alkylation;	
	Hydrolysis and hydratation.*	
	Chapter 6 Coal chemical reaction units (6 contact hours; 6	
	self-study hours)	
	• Distillation of coal;**	
	Gasification of coal;*	
	• Liquefaction of coal;*	
	• Deep processing of coal.	
	Chapter 7 Fine chemical reaction units (3 contact hours; 3	
	self-study hours)	
	• sulfonation reaction; *	
	Nitrification reaction; *	
	• Esterification reaction.	
	Part B. Experiment teaching (0 hour)	
Study and examination	Final score includes: usual performance (30%);final exam	
requirements and forms of	(closed-book written examination) (70%)	
examination	Usual performance includes: assignment, attendance rate,	
	and computer practice	
Media employed	Multimedia computers, projector, laser pointers, blackboard, chalks	
Reading list	1. Required books	
	[1] HUANG Zhongjiu, FNAG Dingy. Chemical	
	Ttechnologies. Beijing: Higher Education Press, 2005	
	2. Reference books	
	[1] MIAO Qiaoli, MI Zhentao. Chemical Ttechnologies.	
	Beijing: Chemical Engineering Industry Press, 2004.	
	[2] ZHANG Xiuling, QIU Yu'e. Chemical Ttechnologies.	
	Beijing: Chemical Engineering Industry Press, 2012.	
	[3]PAN Hongzhang. Chemical Ttechnologies. Beijing:	
	Higher Education Press, 2010	
	3. Other materials	
	[1] PPT courseware (self-compiled)	

Competence field	Electives
Module designation	Process System Identification and Simulation
Code, if applicable	11000360
Subtitle, if applicable	
Semester(s) in which the module	6 th semester
is taught	
Person responsible for the module	Professor ZHANG Lixin
Lecturer	Associate Professor Hu Zhuohuan
	Associate Professor ZHAO Ming
	Lecturer SUN Li
	Lecturer LI Zeqiu
Language	Chinese
Relation to curriculum	Process System Identification and Simulation is an elective
	course for undergraduates of Process Equipment and Control
	Engineering program. After studing of Calculus, Process
	Principle and Equipment, Process Control Theory,
	Measurement and Control Technology of Power Engineering
	and this course, students can further study of process control,
	optimization and integration related courses such as Process
	Analysis and Integration, Energy Management, Complete
	Set Technology of Process Equipment, Equipment Fault
	Diagnosis. Through this course, students not only master the
	basic theories and methods of system identification and
	simulation but also apply knowledge to preliminarily
	conduct process modeling study, the computer simulation as
	well as computer aided design of control system. which will
	lay a solid foundation for further study and future
	engagement in engineering work.
Type of teaching, contact hours	Target students: junior of Process equipment and control
	engineering
	Type of teaching: theoretical teaching, experiment teaching
	Contact hours: 48 hours
	Of which
	Theoretical teaching: 42 hours
	Experiment / practice teaching: 6 hours
ļ	Size of classing many than (0 magnic for the protical
	Size of class: no more than 60 people for theoretical
Workload	teaching Workload= 90 hours
Workload	teaching
Workload	teaching Workload= 90 hours Contact hours = 48 hours
Workload Credit points	teaching Workload= 90 hours

Process System Identification and Simulation

University of Shanghai for Scie	
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	Calculus; College Physics; Linear Algebra; Engineering
	Thermodynamics; Process Principle and Equipment.
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to understand
	basic theories and methods of system identification and
	simulation. Specific objectives include:
	• Knowledge: Master basic concepts of process system,
	process system model, system simulation; understand
	the method of parameter optimization of PID controller;
	master steady state simulation method of system
	optimization.
	• Skills: Master the expressions of mathematical model,
	master response curve method and closed-loop
	experimental method to acquire mathematical model;
	master Fibonacci method; master indirect and direct
	optimization methods of system simulation; master
	several kinds of commonly used probability distribution
	functions and figure measurement of basic
	characteristics of random noise.
	• Competences: Students acquire abilities of applying
	theories and knowledge of system identification and
	simulation combined with examples.
Content	Part A. Theoretical teaching (42 contact hours; 39 self-
	study hours)
	Chapter 1 Introduction (3 contact hours; 3 self-study hours)
	• Concepts of process system, process system model and
	system simulation;
	• Classification of mathematical process system model
	and modeling method;
	• Application and development direction of current
	system simulation.
	Chapter 2 Mathematical model and modeling principle (3
	contact hours; 2 self-study hours)
	• Modeling method and modeling process;*
	• Expressions of mathematical model;**
	• Credibility of model.
	Chapter 3 Establishing of process unit dynamic
	mathematical model (4 contact hours; 4 self-study hours)
	• Pathway and mechanism of establishing dynamic
	mathematical model;*
	• Experimental methods of mathematical model,
	• Response curve method, closed-loop experimental

I

method of mathematical model. **
Chapter 4 Modeling of process system (6 contact hours; 6
self-study hours)
• Directed graph, matrix structure, structure table and
joint equation of describing process system;**
• Calculation of typical system degrees of freedom and
selection of decision variable;
• Physical property data and its estimation method.*
Chapter 5 Digital simulation of continuous system (6
contact hours; 6 self-study hours)
• Representation of continuous system mathematical
model;*
• Method of converting differential equation or transfer
function into state equation;**
• Numerical integration method;**
• Integral stability, step selection equation-oriented
approach of system simulation;
• Discretization model of typical link.**
Chapter 6 Digital simulation of random noise (5 contact
hours; 4 self-study hours)
• Random variable, random process and the basic
characteristic of the random process;
• Several kinds of commonly used probability
distribution functions and figure measurement of basic
characteristics of random noise;*
• Generation of random numbers and reshaping method
for noise.
Chapter 7 Continuous system simulation and controller
parameters optimization (6 contact hours; 6 self-study hours)
• Indirect and direct optimization method;**
• Fibonacci method and uniformly-spaced method;**
Conjugate gradient method;
• Quality of control system;**
• PID controller parameter optimization method.*
Chapter 8 Process system identification and simulation
method (3 contact hours; 2 self-study hours)
• Principle of sequential-modular approach and cutting tachnology of regirevalating flows**
 technology of recirculating flow;** Advantages and disadvantages of sequential-modular
• Advantages and disadvantages of sequential-modular approach, equation-oriented approach and
simultaneous modular approach;
 Current commonly used function of process flow
simulation system.
Similar of Storin

University of Shanghai for Science and Technolo	gv
---	----

University of Shanghai for Scie	••
	Chapter 9 Process system optimization method based on
	simulation (3 contact hours; 3 self-study hours)
	• Basic concept of optimization and mathematical
	definition;**
	• Establishment of optimization model;*
	• Optimization method of steady state simulation.**
	Chapter 10 Training process simulation in computer
	operation (3 contact hours; 3 self-study hours)
	• Characteristics of process simulation in computer
	operation;
	• Methods and steps of mathematical model
	establishment;*
	 Development process and development trend of process
	simulation training system.
	Part B. Experiment / practice teaching (6 experiment
	hours; 3 self-study hours)
	• Training process simulation in computer
	operation (6 experiment hours; 3 self-study
	hours)
Study and examination	Final score includes: usual performance (20%); experiment
requirements and forms of	(10%), final exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate,
	and computer practice
	Experiment score includes: experiment report (50%); and
	experiment exam (50%)
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1] CHEN Zonghai. Process system modeling and
	simulation. Hefei: University of Science and Technology of
	China Press, 2002
	2. Reference books
	[1] HAN Pu, LUO Yi, ZHOU Lihui, et al. Control system
	digital simulation technology. Beijing: China Electric
	Power Press, 2007
	[2] TU Jian. Digital simulation of control system and
	computer aided design. Beijing: Huazhong University of
	Science and Technology Press, 1985
	[3] KANG Fengju. Modern simulation technology and
	application. Beijing: National Defend Industry Press, 2001
	[4] SUN Liang. MATLAB language and control system
	simulation. Beijing: Beijing University of Technology
	Press, 2001

Energy Management	
Competence field	Electives
Module designation	Energy Management
Code, if applicable	11001400
Subtitle, if applicable	
Semester(s) in which the module	6 th semester
is taught	
Person responsible for the module	Professor Cai Xiaoshu
Lecturer	Professor ZHANG Lixin
	Professor DOU Binlin
	Associate Professor XIE Yingming
	Lecturer SUN Li
	Lecturer YANG Jie(F)
	Lecturer HANG Xiuhui
Language	Chinese
Relation to curriculum	Energy Management is a course offered to juniors of energy
	and power engineering related programs. After learning
	courses of Calculus, Engineering Thermodynamics and Heat
	Transfer, students can start this course including energy
	balance of the enterprise and its equipment, energy audit,
	energy system analysis theory, energy system network,
	input-output analysis, linear programming and optimization,
	forecasting theory of social and economic energy demand,
	etc. Through this course, students can understand various
	energy systems, basic principle of energy conservation, and
	common method of energy management. The course lays a
	foundation for the following work of the energy management
	and the energy policy research.
Type of teaching, contact hours	Target students: students of energy and power engineering
	related program
	Type of teaching: theoretical teaching
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 48 hours
	Size of class: no more than 60 people for theoretical teaching
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 and
examination regulations	assignment completion rate over 2/3 are allowed to take the
	exam.
Recommended prerequisites	Calculus; Engineering Thermodynamics; Heat Transfer

Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to understand
learning outcomes	various energy systems, basic principle of energy
	conservation, common method of energy management, and
	to lay a foundation for the following work of the energy
	management and the energy policy research. Specific
	objectives include:
	• Knowledge: Master general principles of energy audit,
	energy system analysis, energy system network, input-
	output analysis, linear programming and optimization,
	forecasting theory of social and economic demand.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about energy system;
	understand engineering application of energy
	management; master methods for energy audit, energy
	system analysis; be able to work out rational energy
	development plan according to different regional needs
	and calculate relevant economic benefits.
	• Competences: Develop abilities in energy system
	design and process optimization; be able to solve
	problems by using acquired knowledge in future work
	and study.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1 Introduction (3 contact hours; 2 self-study
	hours)
	• Energy profile;
	• The energy policy of our country;
	• The development of energy and energy conservation;
	• Energy technology economic analysis;
	• Energy systems engineering and energy management.
	Chapter 2 The energy balance of the enterprise (6 contact
	hours; 5 self-study hours)
	• Introduction;
	• Energy balance data of test and statistics, checking; *
	Mass balance and energy balance; *
	 Mass balance and energy balance; *
	 Mass balance and energy balance; * The division of testing system , effective energy
	 Mass balance and energy balance; * The division of testing system , effective energy utilization; *
	 Mass balance and energy balance; * The division of testing system , effective energy utilization; * Boiler thermal balance; *
	 Mass balance and energy balance; * The division of testing system , effective energy utilization; * Boiler thermal balance; * Fan and water pump energy balance test.

audit;

- Energy statistics and checking; **
- Energy consumption index , the reduction factor of the direct production of decomposition and its energy consumption; **
- Energy audit calculation table. *

Chapter 4 Balance (9 contact hours; 9 self-study hours)

- The second law of thermodynamics, entropy and exergy loss; **
- Exergy calculation and grade coefficient; **
- Exergy loss calculation of thermal process; **
- T-S diagram and heat exergy diagram; **
- The exergy balance and efficiency of the thermal system. *

Chapter 5 Energy systems can flow network diagram and its application (4 contact hours; 4 self-study hours)

- Energy systems energy flow network diagram;
- Energy system network graph structure; *
- The application of network diagram energy system; *

Chapter 6 Energy linear programming model (4 contact hours; 5 self-study hours)

- Introduction of the linear programming model;
- Energy linear programming model of the application; *
- The general requirements of energy structure linear programming model and basic steps. *

Chapter 7 Energy input-output model (5 contact hours; 4 self-study hours)

- Introduction of input-output analysis;
- Examples;
- Input and output analysis table; *
- Energy input-output model; *
- The application of energy input-output model

Chapter 8 Energy demand forecasting (8 contact hours; 6 self-study hours)

- Summary of energy demand forecasting;
- Regression analysis method; *
- Elastic coefficient method; *
- Per capita energy method; *
- Energy consumption per unit output value (output) forecast method; *
- Industrial branch analyzing method; *
- Input-output method; *
- The general procedure and matters of energy demand

University of Shanghai for Scie	forecasting.
	C
	Part B. Experiment / practice teaching (0 hours)
Study and examination	Final score includes: usual performance (30%) and final
requirements and forms of	exam (closed-book written examination) (70%)
examination	Usual performance includes: assignment and attendance rate
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1] Long Minxian, Liu Tiejun. Energy Management
	Engineering (1st edition). Guangzhou: South China
	University of Technology Press, 2000
	2. Reference books
	[1] China Petroleum and Chemical Industry Association,
	China Association of Chemical Energy Saving Technology.
	Petroleum and chemical industry energy manager tutorial
	(1st edition). Beijing: Chemistry Industry Press, 2007
	[2] PEREZ Francisco Macia. Energy Management (1 st
	edition). InTech Press, 2010
	[3] TANG Xuezhong. Heat Energy Conversion and
	Utilization (2 nd edition). Beijing: Metallurgical Industry
	Press, 2002
	3. Other materials
	[1] PPT courseware (self-compiled)
	[2] Supplementary new energy management teaching
	materials (self-compiled)

C (11	
Competence field	Electives
Module designation	Process Analysis and Integration
Code, if applicable	11000310
Subtitle, if applicable	
Semester(s) in which the module	7 th semester
is taught	
Person responsible for the module	Professor CUI Xiaoyu
Lecturer	Associate Professor YE Li
	Lecturer WANG Zhiyuan
	Lecturer YANG Jie(F)
	Lecturer Xu Jiayin
Language	Chinese/English
Relation to curriculum	The students get the ability of solving and analyzing process
	problems basing on system engineering from the course after
	learning Process Principles and Equipment, Chemical
	Reaction Engineering, and other related courses. The course
	mainly focus on the analysis, the optimization and synthesis
	of chemical process system. The system analysis mainly
	consists of system processing, loop analysis, modeling and
	the solution of the steady state and dynamic model. The
	synthesis of chemical process system consists of the
	intermittent operation system, the comprehensive use of
	energy and the separation sequence synthesis. The
	optimization of chemical process consists of the general
	optimization problems, the optimization of the large
	chemical system, the tuning problems, etc.
Type of teaching, contact hours	Target students: seniors of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching
	Contact hours: 48 hours
	Of which,
	Theoretical teaching:48 hours
	Size of class: No more than 60 people for theoretical
	teaching
Workload	Workload= 90 hours
	Contact hours $= 48$ hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 are allowed
examination regulations	to take the exam.
Recommended prerequisites	Engineering Thermodynamics; Heat Transfer; Process
	Principle and Equipment

Process Analysis and Integration

Module objectives/intended	Module objectives:
5	-
learning outcomes	• Knowledge: Students master the basic knowledge of process analysis and synthesis, the common modeling software of chemical process and CIPS technology in enterprise; know the three basic methods of modeling process system, the method of dynamic modeling of process system and mastering the basic knowledge of the concentrative parameter model, distributed parameter model and multilevel concentrative parameter model; master the basic knowledge of the optimization problem of the process system and knowing the solution method of classic liner / non-liner problem; know the method and meaning of the tuning; mastering the equipment design and optimization method in an multi-product intermittent process; master the method using pinch technology for the synthesis of heat
	exchange network; master the basic knowledge of the separation tower sequence synthesis and knowing the
	common method.
	• Skills: Students acquire basic theoretical and
	specialized knowledge about process analysis and synthesis;
	understand engineering application of the modeling of chemical process system; mastering the general modeling methods of the process system, the establishment of a dynamic model and the mathematical treatment methods.
	 Competences: Students acquire practical abilities and
	innovative thinking on the basis of the synthesis technology and the optimization method, and be capable of designing the appropriate and optimal separation processing in chemical industry.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	 study hours) Chapter 1. Introduction of Process Analysis and Integration (6 contact hours; 3 self-study hours) Course system structure; *
	 Chemical process modeling system; *
	• CIPS technology in enterprise;*
	• The application of artificial intelligence in process.* Chapter 2 . The Analysis and Modeling of A Steady-state Process System (6 contact hours; 6 self-study hours)
	• The basic methods of modeling the process system (the sequential modular method, the equation oriented method
	 and the simultaneous modular method); ** The analysis and modeling of synthesis of ammonia; *

I

Chapter 3. The Analysis and Modeling of A Dynamic
Process System (6 contact hours; 6 self-study hours)
• The dynamic model of the process system; **
• The dynamic characteristic of the continuous stirring
reactor; *
• The dynamic characteristic of the distillation tower; *
• The analysis and modeling of PSA process; *
Chapter 4. The Optimization of the Process System (6
contact hours; 6 self-study hours)
• The basic concepts of the optimization of the process
system; *
• The liner programming and non-liner programming
problems in the process; *
• The optimization of the large process system. *
Chapter 5. The Tuning of Operation Conditions in the
Manufacture Process (6 contact hours; 6 self-study hours)
• The effect and meaning of the tuning of operation
conditions in the manufacture process; *
• The method of off-line tuning of operation conditions
in the manufacture process. *
Chapter 6. The Modeling of Intermittent Chemical Process
(6 contact hours; 6 self-study hours)
• The intermittent and continuous process; *
• The dynamic modeling of the process; *
• The optimal time schedule in the intermittent process;*
• The equipment design and optimization of the
intermittent process for multi- product; *
• The control model of the intermittent process. *
Chapter 7. The Synthesis of Heat Exchange Network (6
contact hours; 6 self-study hours)
• The synthesis problem of heat exchange network; *
• The pinch technology of the synthesis of heat exchange
network; **
• The tuning of heat exchange network; *
• The synthesis of heat exchange network in actual
engineering projects. *
Chapter 8. The Separation Tower Sequence Synthesis (6
contact hours; 3 self-study hours)
• The general concept of the separation sequence
synthesis; *
• The dynamic programming; *
• The separation coefficient sequence method; *
• The relative cost function method; *

	• The tuning; *
	• The separation sequence of complex tower. **
	Part B. Experiment / practice teaching (0 hour)
Study and examination	Final score includes: usual performance (30%); final exam
requirements and forms of	(closed book written examination) (70%)
examination	Usual performance: attendance; classroom performance
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, teachers pointer
Reading list	1. Required books
	[1] MA Dexian, etc. The Analysis and Synthesis of
	Chemical Process. Beijing: Chemical Industry Press, 2002.
	2. Reference books
	[1] XU Guangyou. The Artificial Intelligence and Its
	Application (2 nd edition). Beijing: Tsinghua University
	Press, 1996.

FEM Numerical Simulation	
Competence field	Electives
Module designation	FEM Numerical Simulation
Code, if applicable	11850050
	11830030
Subtitle, if applicable	7 th semester
Semester(s) in which the module is taught	/··· semester
Person responsible for the module	Professor HUANG Diangui
Lecturer	Associate Professor YANG Fan
	Associate Professor CHEN Eryun
	Lecturer YANG Jie(M)
	Lecturer CHEN Liu
	Lecturer Xu Jiayin
Language	Chinese
Relation to curriculum	Finite Element Method (FEM), as a powerful tool, is widely
	used in design and development of Engineering equipment,
	and is significantly concerned by the engineering application
	area due to its generalization and efficiency. FEM Numerical
	Simulation is a course offered to undergraduates of Process
	Equipment and Control Engineering program. It is designed
	to help students understand basic principles and application
	of the course and cultivate students' abilities in analyzing
	simple statics and dynamics problems by using this tool so
	as to lay a foundation for follow-up courses such as
	Internship and Bachelor Thesis. Students can start this course
	after completing courses including Calculus, Linear Algebra,
	Mechanics of Materials and Theoretical Mechanics.
Type of teaching, contact hours	Target students: seniors of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching, computer practice
	Contact hours: 48 hours
	Of which:
	Theoretical teaching: 24 hours
	Computer practice: 24 hours
	Size of class: No more than 60 people for theoretical
	teaching; no more than 60 people for computer practice
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 are allowed
examination regulations	to take the exam.
Recommended prerequisites	Calculus; Linear Algebra; Mechanics of Materials;

	Theoretical Mechanics
Module objectives/intended	Module objectives:
Module objectives/intended learning outcomes	
	FEM tools so as to lay a foundation for engagement in
	FEM simulation in future scientific research and engineering application endeavor.
Content	Part A. Theoretical teaching (24 contact hours; 21 self-
Content	study hours)
	Chapter 1 The Application and Significance of FEM in
	Engineering (3 contact hours; 3 self-study hours)
	• Brief introduction of basic principles, development and application of FEM;
	 Solution to the problem of one dimensional ladder rod structure;*
	Chapter 2 Structural Analysis of Rod and Beam (4 contact
	hours; 3 self-study hours)
	• Mechanical analysis of simple spring, rod and beam
	structure;*
	• Beam element and related coordinate conversion
	method; Treatment of boundary conditions:**
	 Treatment of boundary conditions;** The basic process of finite element analysis.*

University of Shanghai for Scie	
	 Chapter 3 Mechanical Description of Continuous Deformable Bodies (3 contact hours; 3 self-study hours) Basic mechanical equations of plane problem and space problem; Energy representation of elastic problems; Virtual displacement; virtual displacement and virtual work principle.* Chapter 4 Analysis of continuous deformable bodies (4 contact hours; 4 self-study hours) Unit construction of plane problem, axisymmetric problem and space problem;* Treatment of unit division force. Chapter 5 Analysis of Static Structure (5 contact hours; 4 self-study hours) Static analysis method of beam structure. **
	-
	Chapter 6 Analysis of Vibration Problems (5 contact hours;
	4 self-study hours)
	Basic equation of vibration analysis; *
	• Vibration analysis of simple structure. ** Port B. Computer protion (24 context hours) 21 colf
	Part B. Computer practice (24 contact hours; 21 self- study hours)
	study hours)
	• Numerical analysis of rod structure and beam structure (4 contact hours; 2 self-study hours)
	 Parametric analysis of bridge structure (6 contact hours;
	6 self-study hours)
	 Parametric analysis of hydraulic press frame (6 contact
	hours; 6 self-study hours)
	• Vibration modal analysis of automotive suspension
	system (8 contact hours; 7 self-study hours)
Study and examination	Open book exam (accounting for 50% of final score); four
requirements and forms of	computer practices (accounting for 50% of final score)
examination	
Media employed	Blackboard, electronic blackboard, combination with
	computer practice
Reading list	1. Required books
	[1] Finite Element Analysis in Engineering, ZENG Pan,
	Science Press, 2010
	2. Reference books
	[1] Foundation of Finite Element Method, JIANG Xiaoyu,
	Tsinghua University Press, 1992
	[2] Finite Element Analysis ANSYS Theory and
	Application (The Third Edition), (US) Moaveni, S. WANG Song trans. Electronics Industry Press, 2008
	Song trans. Electronics Industry Press, 2008

-	
	[3] Foundation of Finite Element Technique, LENG Jitong,
	Chemical Industry Press, 2007
	[4] Finite Element Method (The First Edition), WANG
	Xucheng, Tsinghua University Press, 2005
	3. Other materials
	[1] PPT courseware (self-compiled)

widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teaching, computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to the Only students with class attendance rate over 2/3 are allowed	CFD Numerical Simulation	
Code, if applicable 11850020 Subtitle, if applicable 7th semester Semester(s) in which the module 7th semester is taught Professor GUO Xueyan Lecturer Professor VANG Ailing Professor HUANG Diangui Associate professor GUO Xueyan Associate professor GUX Xueyan Associate professor CHEN Eryun Lecturer Chinese Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related profession 4 application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching: related programs. Type of teaching, contact hours Target students: seniors of energy and power	Competence field	Electives
Subtitle, if applicable 7th semester Semester(s) in which the module 7th semester is taught Professor GUO Xueyan Lecturer Professor GUO Xueyan Associate Professor GUO Xueyan Associate Professor GUO Xueyan Associate Professor GUO Xueyan Associate professor GUO Xueyan Associate professor CHEN Eryun Lecturer WANG Ying Language Chinese Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching: contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching: no more than 60 people for computer practice Workload	Module designation	CFD Numerical Simulation
Semester(s) in which the module 7th semester is taught Professor GUO Xueyan Decturer Professor HUANG Diangui Associate professor GUO Xueyan Associate professor GUO Xueyan Associate professor GUO Xueyan Associate professor CHEN Eryun Lecturer WANG Ying Language Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching: theoretical teaching; computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practice Workload Workload= 90 hours Conduct points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed	Code, if applicable	11850020
is taught Person responsible for the module Professor GUO Xueyan Lecturer Professor HUANG Diangui Associate Professor GUO Xueyan Language Chinese Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teac	Subtitle, if applicable	
Person responsible for the module Professor GUO Xueyan Lecturer Professor YANG Ailing Professor HUANG Diangui Associate professor GUO Xueyan Asociate professor GUO Xueyan Asociate professor GUO Xueyan Asociate professor GUO Xueyan Lecturer WANG Ying Language Chinese Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching; computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching: no more than 60 people for computer practice Workload Workload=90 hours Contact hours = 48 hours Self-study hours = 42 hours Credit points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed	Semester(s) in which the module	7 th semester
Lecturer Professor YANG Ailing Professor HUANG Diangui Associate Professor GUO Xueyan Associate professor GUO Xueyan Associate professor CHEN Eryun Lecturer WANG Ying Language Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching; computer practice Contact hours: 48 hours Of which: Theoretical teaching; theoretical teaching, computer practice Contact hours: Size of class: No more than 60 people for theoretical teaching; nomore than 60 people for computer practice Workload	is taught	
Professor HUANG Diangui Associate Professor GUO Xueyan Asociate professor GUO Xueyan Asociate professor CHEN Eryun Lecturer WANG YingLanguageChineseRelation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs. related programs. Type of teaching; contact hoursType of class:No more than 60 people for theoretical teaching; no more than 60 people for computer practice Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to the Only students with class attendance rate over 2/3 are allowed	Person responsible for the module	Professor GUO Xueyan
Associate Professor GUO XueyanAssociate professor YANG FanAsociate professor CHEN EryunLecturer WANG YingLanguageChineseRelation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, 	Lecturer	Professor YANG Ailing
Associate professor YANG Fan Associate professor CHEN Eryun Lecturer WANG YingLanguageChineseRelation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teaching, computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload = 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to the Only students with class attendance rate over 2/3 are allowed		Professor HUANG Diangui
Asociate professor CHEN Eryun Lecturer WANG YingLanguageChineseRelation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs. related programs. Type of teaching: contact hoursType of teaching, contact hoursTarget students: seniors of energy and power engineering related programs. Type of teaching: 24 hours Computer practice Contact hours: 48 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to theOnly students with class attendance rate over 2/3 are allowed		Associate Professor GUO Xueyan
Lecturer WANG YingLanguageChineseRelation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs. It shows of which: Theoretical teaching; 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to theOnly students with class attendance rate over 2/3 are allowed		Asociate professor YANG Fan
Language Chinese Relation to curriculum Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations. Type of teaching, contact hours Target students: seniors of energy and power engineering related programs. Type of teaching: theoretical teaching: theoretical teaching, computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practice Workload Workload=90 hours Contact hours = 48 hours Self-study hours = 42 hours Contact hours = 42 hours Contact hours = 42 hours		Asociate professor CHEN Eryun
Relation to curriculumComputational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teaching, computer practice Contact hoursWorkloadWorkload= 90 hours Contact hoursGitSize of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practice Size of class: No more than 60 people for computer practiceWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to the Only students with class attendance rate over 2/3 are allowed		Lecturer WANG Ying
widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.Type of teaching, contact hoursTarget students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teaching, computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical teaching; no more than 60 people for computer practiceWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0Requirements according to the Only students with class attendance rate over 2/3 are allowed	Language	Chinese
engineering related programs related programs.Type of teaching: theoretical teaching, computer practiceContact hours: 48 hoursOf which:Theoretical teaching: 24 hoursComputer practice: 24 hoursSize of class: No more than 60 people for theoreticalteaching; no more than 60 people for computer practiceWorkloadWorkloadWorkloadCredit points3.0Requirements according to theOnly students with class attendance rate over 2/3 are allowed	Relation to curriculum	Computational Fluid Dynamics (CFD), as a powerful tool, is widely used in design and development of process equipment. CFD Numerical Simulation is a course offered to undergraduates of energy and power engineering related programs. It is designed to help students understand basic principles and application of the course and cultivate students' abilities in analyzing complex fluid problems by using this tool so as to lay a foundation for follow-up courses such as Internship and Bachelor Thesis. Students can start this course after completing courses including Calculus, Engineering Fluid Mechanics, Computer Modeling Practice and mastering basic laws of fluid motion and control equations.
Contact hours = 48 hours Self-study hours = 42 hours Credit points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed	Type of teaching, contact hours	Target students: seniors of energy and power engineering related programs related programs. Type of teaching: theoretical teaching, computer practice Contact hours: 48 hours Of which: Theoretical teaching: 24 hours Computer practice: 24 hours Size of class: No more than 60 people for theoretical
Self-study hours = 42 hours Credit points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed	Workload	Workload= 90 hours
Credit points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed		Contact hours = 48 hours
Credit points 3.0 Requirements according to the Only students with class attendance rate over 2/3 are allowed		Self-study hours = 42 hours
Requirements according to the Only students with class attendance rate over 2/3 are allowed	Credit points	
	Requirements according to the	Only students with class attendance rate over 2/3 are allowed
examination regulations to take the exam.	examination regulations	to take the exam.

University of Shanghai for Scie	
Recommended prerequisites	Calculus; Engineering Fluid Mechanics; Computer Modeling Practice
Module objectives/intended	Module objectives:
learning outcomes	CFD Numerical Simulation is an engineering application
learning outcomes	course offered to undergraduates of energy and power
	engineering related programs. It is designed to help
	students understand basic principles and application of the
	course and cultivate students' abilities in analyzing complex
	fluid problems by using fluid mechanics methods, and lay a
	foundation for follow-up courses such as Internship and
	Bachelor Thesis. Specific objectives include.
	• Knowledge: Flow conservation equation and
	numerical discretization method; determination of
	boundary conditions; method for solving linear
	equations; processing and analysis of simulation results
	etc.
	• Skills: Learn to use common CFD simulation tools,
	including establishment of geometric model and mesh
	generation, establishment of fluid problem model, post-
	processing of calculation results etc; students are able
	to simulate and analyze simple fluid problems by using
	common CFD software.
	• Competences: Develop students' abilities in analyzing
	and studying fluid problems by using CFD tools so as
	to lay a foundation for engagement in CFD simulation
	in future scientific research and engineering application
	endeavor.
Content	Part A. Theoretical teaching (24 contact hours; 24 self-
	study hours)
	Chapter 1 Introduction (4 contact hours; 4 self-study
	hours)
	• Brief introduction of basic principles, development and
	application of fluid mechanics;
	• Fluid mechanics control equation;*
	• Mathematical properties of fluid mechanics control
	equation.
	Chapter 2 One Dimensional Compressible Flow
	Differential Method of Euler Equation (8 contact hours; 8
	self-study hours)
	• One-dimensional shock tube problems;
	• One-dimensional Euler conservation equations;*
	• Space discretization of convection term;**
	• Time marching scheme;*

	 Programming for numerical calculation of one dimensional Euler equation.*
	Chapter 3 Finite Volume Method of 2-D Non-compressible
	Viscous Flow N-S Equation (8 contact hours; 8 self-study
	hours)
	 Control equation of two-dimensional square cavity driven;
	• Finite volume discretization of two-dimensional N-S
	equation;**
	Staggered mesh;*
	Discrete boundary conditions;*
	Calculation steps of the Simple algorithm.*
	Chapter 4 Preliminary Application of CFD Commercial Software (4 contact hours; 4 self-study hours)
	• Review of some key problems in calculation fluid
	mechanics;*
	• Introduction of mature commercial software;
	• Application of NUMECA software.*
	Part B. Computer practice (24 contact hours; 18 self-
	study hours)
	• Procedures for the preparation and operation of one-
	dimensional Euler equation; solving of one-
	dimensional shock tube problem (4 contact hours; 2
	self-study hours)
	• Debugging and operation of two-dimensional non-
	compressibleN-S equation; Solution to simple two-
	dimensional non compressible flow, such as Driven
	square cavity (4 contact hours; 2 self-study hours)
	• Two-dimensional simulation of viscous flow with
	NUMECA (including mesh generation, solving and analysis) (6 contact hours; 4 self-study hours)
	 Complex 3D simulation of viscous flow with
	• Complex 5D simulation of Viscous flow with NUMECA (such as flow in compressor stage, flow in
	turbine stage, etc.) (10 contact hours; 10 self-study
Study and examination	hours) Open book exam (accounting for 50% of final score); four
requirements and forms of	computer practices (accounting for 50% of final score)
examination	
Media employed	Blackboard, electronic blackboard, combination with
	computer practice
Reading list	1. Required books

, ,	÷;
	[1] Computational Fluid Mechanics and Application, (US)
	John D. Anderson. WU Songping, LIU Zhaomiao trans.
	Machinery Industry Press, 2007
	2. Reference books
	[1] Computational Fluid Mechanics Analysis Principles
	and Application of CFD Software, WANG Fujun, Tsinghua
	University Press, 2004
	[2] Engineering Fluid Mechanics, GUI Keting, Science
	Press, 2004
	[3] Numerical Heat Transfer, TAO Wenquan, Xian Jiaotong
	University Press, 2001
	[4] Computational Fluid Dynamics: The Basic with
	ApplicationsJohn D. Anderson Jr.McGraw-Hill, Inc. 1995
	3. Other materials
	[1] PPT courseware (self-compiled)

Competence field Electives Module designation Complete Set Technology of Process Equipment Code, if applicable 11000390 Subtitle, if applicable 7 th semester Semester(s) in which the module 7 th semester is taught 7 th semester Person responsible for the module Associate Professor Xu bo Lecturer Associate Professor FAN Fengxian Lecturer SUN Li Language Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering process route selection, process cess design, investment estimation and cost analysis, process design and process flow chart, process equipment as sprocess design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program. Type of teaching: 48 hours S	Complete Set Technology of Process Equipment	
Code, if applicable 11000390 Subtitle, if applicable 7 th semester Semester(s) in which the module 7 th semester is taught Associate Professor Xu bo Lecturer Associate Professor SU Wenxian Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer Associate Professor FAN Fengxian Lecturer SUN Li Eaguer SUN Li Language Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipelline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching, contact hours Size of class: No more than 60 people for theoretical teaching Workload Workload Workload 90 hours	Competence field	Electives
Subtitle, if applicable 7 th semester Semester(s) in which the module 7 th semester is taught Associate Professor Xu bo Lecturer Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN Li Language Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching: contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching: thoretical teaching Contact hours: 48 hours Size of class: No more than 60 people for theoretical teaching Workload Workload 90 hours Contact hours = 48 hours	Module designation	Complete Set Technology of Process Equipment
Semester(s) in which the module is taught 7th semester Person responsible for the module Associate Professor Xu bo Lecturer Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN Li Language Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching: contact hours Type of teaching. contact hours Target students: seniors of Process Equipment and Control Engineering rogram Workload Workload= 90 hours Contact hours = 48 hours Size of class: No more than 60 people for theoretical teaching Workload Solf-study hours = 42 hours	Code, if applicable	11000390
is taught Associate Professor Xu bo Person responsible for the module Associate Professor Xu bo Lecturer Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN Li Language Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching, contact hours: Target students: seniors of Process Equipment and Control Engineering program Workload Workload= 90 hours Size of Class: No more than 60 people for theoretical teaching Contact hours = 48 hours Self-study hours = 42 hours	Subtitle, if applicable	
Person responsible for the module Associate Professor Xu bo Lecturer Associate Professor Xu bo Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN Li Language Chinese Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design, investment estimation and cost analysis, process design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering rogram Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering rogram Type of teaching and process industry equipment and Control Engineering rogram Type of teaching: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teaching Workload Workload= 90 hours Contact hours = 48 hours	Semester(s) in which the module	7 th semester
Lecturer Associate Professor Xu bo Associate Professor SU Wenxian Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN Li Language Chinese Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Workload Workload= 90 hours Workload Workload= 90 hours Credit points 3.0	is taught	
Associate Professor SU Wenxian Associate Professor FAN Fengxian Lecturer SUN LiLanguageChineseRelation to curriculumThe packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration.Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: contact hoursType of claching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0	Person responsible for the module	Associate Professor Xu bo
Associate Professor FAN Fengxian Lecturer SUN LiLanguageChineseRelation to curriculumThe packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration.Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hours	Lecturer	Associate Professor Xu bo
Lecturer SUN LiLanguageChineseRelation to curriculumThe packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration.Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload=90 hours Contact hours = 48 hours Self-study hours = 42 hours		Associate Professor SU Wenxian
LanguageChineseRelation to curriculumThe packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design, investment estimation and cost analysis, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration.Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: Contact hours: 48 hours Of which Theoretical teaching: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hours		Associate Professor FAN Fengxian
Relation to curriculum The packaged technique of the process assembling is one of the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration. Type of teaching, contact hours Target students: seniors of Process Equipment and Control Engineering program Type of teaching, contact hours Contact hours: 48 hours Of which Theoretical teaching: 0 hours Size of class: No more than 60 people for theoretical teaching Workload Workload= 90 hours Credit points 3.0		Lecturer SUN Li
the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis, pipeline vibration.Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0	Language	Chinese
Type of teaching, contact hoursTarget students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Of which Theoretical teaching: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical teachingWorkloadWorkload= 90 hours Contact hours = 48 hours Self-study hours = 42 hoursCredit points3.0	Relation to curriculum	the main courses for undergraduates of Process Equipment and Control Engineering program. Theoretical knowledge in the curriculum is crucial for main devices applied in process industry. Based on engineering practice, the course systematically introduces basic the packaged technique. It focuses on introduction of application of the engineering characteristics, process industry equipment and technology, as well as, process development, process route selection, process design, investment estimation and cost analysis, process design and process flow chart, process equipment design, mechanical structure design of equipment, machine selection, selection of driving machine, piping design requirements and general procedures, piping stress analysis,
Contact hours = 48 hoursSelf-study hours = 42 hoursCredit points3.0	Type of teaching, contact hours	Target students: seniors of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Of which Theoretical teaching: 48 hours Experiment / practice teaching: 0 hours Size of class: No more than 60 people for theoretical
Credit points 3.0	Workload	Contact hours = 48 hours
-	Credit points	
	-	Only students with class attendance rate over 2/3, assignment

Complete Set Technology of Process Equipment

University of Shanghai for Sci	ence and Technology
examination regulations	completion rate over 2/3, and performing required
	experiments are allowed to take the exam.
Recommended prerequisites	Calculus; Engineering Thermodynamics; Engineering Fluid
	Mechanics.
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to understand the
	process technique and basic theories through teaching and
	practice. Specific objectives include:
	• Knowledge: Students acquire basic theoretical and
	specialized knowledge about packaged technique of the
	process assembling; understand engineering application
	of the packaged technique; acquire deep understanding
	of the phenomena and mechanism;
	• Skills: Through this course, students are able to analyze
	and solve related technique problems of the process
	assembling, including analysis and improvement of
	existing technique.
	• Competences: Students acquire practical abilities and
	innovative thinking on the basis of the theories and
	engineering technology knowledge.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1 Introduction (4 contact hours; 4 self-study hours)
	The characteristics of the process industry;The engineering application of the process industry
	equipment; **
	 The main tasks and basic requirements of the process
	equipment.
	Chapter 2 Process development and process design (6
	contact hours; 4 self-study hours)
	• Process development process and process design;
	 Program and design documents; **
	• Overall design of process design;
	Chapter 3 Economic analysis and evaluation (8 contact
	hours; 6 self-study hours)
	• Investment estimation and cost analysis; *
	• Economic evaluation; **
	• Environmental impact assessment;
	• Feasibility study report.
	Chapter 4 Process design and equipment layout design (10
	contact hours; 10 self-study hours)
	• Process design and equipment layout design; **
	• Basic principles of process design, drawing a simple

University of Shanghai for Sc	ience and Technology
	process flow chart;
	• Basic principles of equipment layout, reading
	equipment layout chart.
	Chapter 5 Design and selection of process equipment (12
	contact hours; 10 self-study hours)
	 Process equipment technology design; *
	 Mechanical structure design of equipment;**
	• Machine selection;
	• Selection of driving machine.
	Chapter 6 Piping design (8 contact hours; 8 self-study
	hours)
	• Basic requirements for piping design;
	• Pipeline design, pipeline stress analysis; **
	• Piping vibration;*
	• Measures to eliminate and reduce the vibration of
	pipes.
	Part B. Experiment / practice teaching (0 hour)
Study and examination	Final score includes: usual performance (30%); final exam
requirements and forms of	(closed-book written examination) (70%)
examination	Usual performance includes: assignment, attendance rate,
	and computer practice
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks
Reading list	1. Required books
	[1] Huang Zhenren et al. packaged technique of the process
	assembling (1 edition). Beijing: Chemical Industry Press,
	2001
	[2] Huang Zhenren et al. Guide for design of packaged
	technique of the process assembling (1 edition). Beijing:
	Chemical Industry Press, 2001
	[3] Zheng Jinyang. Process equipment design Chemical
	[3] Zheng Jinyang. Process equipment design Chemical Industry Press (3 edition). Beijing: Chemical Industry
	[3] Zheng Jinyang. Process equipment design Chemical Industry Press (3 edition). Beijing: Chemical Industry Press, 2010
	[3] Zheng Jinyang. Process equipment design Chemical Industry Press (3 edition). Beijing: Chemical Industry

Water Treatment Engineering	
Competence field	Electives
Module designation	Water Treatment Engineering
Code, if applicable	11001130
Subtitle, if applicable	
Semester(s) in which the module	7 th semester
is taught	
Person responsible for the module	Associate Professor MA Youfu
Lecturer	Associate Professor MA Youfu
	Lecturer WANG Zhiyun
	Lecture YANG Jie(F)
Language	Chinese/Engilish
Relation to curriculum	Water treatment is an engineering course focusing on the
	techniques of water pollution control and feed water
	treatment. It mainly consists of the technologies of the
	separation and conversion of pollutants in wastewater, the
	wastewater disinfecting technologies, the circulating cooling
	water treatment technologies, the design and plan for water
	treatment engineering, etc. The main contents are the
	adjustments of the quality and quantity of water, the
	filtration, the coagulation, the sedimentation and flotation,
	the adsorption and ion exchange, the membrane separation
	technology, the oxidation and reduction, the activated sludge
	process, the biofilm process, the anaerobic biochemical
	treatment, the bio-denitrification technology, the
	concentration and disposal of sludge, the treatment and
	utilization of circulating cooling water, the design of waste
	water treatment engineering, etc.
Type of teaching, contact hours	Target students: senior of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching
	Contact hours: 48 hours
	Of which,
	Theoretical teaching:48 hours
	Size of class: No more than 60 people for theoretical
	teaching
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 are allowed
examination regulations	to take the exam.
Recommended prerequisites	Process Fluid Machinery, Process Principle and Equipment

Water Treatment Engineering

Module objectives/intended	Module objectives:
learning outcomes	• Knowledge: The general situation of water source in
	China and around the world. Types of process and devices of
	waste water or feed water pollution control; the basic
	principles and methods of water pollution control and water
	purification with popularity; the working principles of
	devices of water treatment.
	• Skills: Systematic understanding of basic types and
	current situation of all kinds of process and devices of
	waste water or feed water pollution control; be familiar with
	components, structure, working principles and operation
	adjustment of devices of water treatment. Students can
	broaden horizon.
	• Competences: The technologies introduced by this
	course are common technologies for solving problems
	connected with industrial devices, such as high efficient
	water treatment technology, design for different kinds of
	devices of water treatment, optimization and arrangement
	technology for waste water treatment engineering, industrial
	water treatment technology, operation and accident handling
	technology for related equipment, etc. This course,
	therefore, lays a foundation for further study and future
	practical work.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1. Introduction of Water Treatment (6 contact
	hours; 3 self-study hours)
	• Overview of water source in China and around the
	world; *
	• The general situation of water pollution around the
	world. *
	Chapter 2. Physical Treatment Methods (6 contact hours; 6
	self-study hours)
	• The grille method; *
	• The filtration method; *
	• The centrifugal method; *
	• The precipitation method. *
	Chapter 3. Chemical Process Treatment Method (6 contact
	hours; 6 self-study hours)
	• The coagulation method; *
	• The chemical neutralization method; *
	• The oxidation and reduction method; *
	Chapter 4. Physical-Chemical Treatment Method (6 contact

University of Shanghai for Scie	nce and Technology
	hours; 6 self-study hours)
	 The adsorption and ion exchange method; *
	 The extraction method; *
	 The air and steam stripping method; *
	 The membrane method. *
	Chapter 5. Biochemical Treatment Method (6 contact hours;
	6 self-study hours)
	 The activated sludge method; *
	 The activated studge method, * The biofilm method; *
	 The anaerobic biochemical method; * The bio-denitrification method. *
	Chapter 6. Recycling Utilization of Waste Water and
	Cycling Cooling Water (6 contact hours; 6 self-study hours)
	• The recycling of waste water in industry; **
	• The utilization of cycling water. **
	Chapter 7. Design of Waste Water Treatment Engineering
	(6 contact hours; 6 self-study hours) *
	Chapter 8. Waste Water Treatment Process in Industry (6
	contact hours; 3 self-study hours)
	• Waste water treatment in Petrochemical Industry; *
	• Waste water treatment in Coal chemical Industry; *
	• Waste Water Treatment in printing and dyeing industry.
	*
	Part B. Experiment / practice teaching (0 hour)
Study and examination	Final score includes: usual performance (30%); final exam
requirements and forms of	(closed book written examination) (70%)
examination	Usual performance: attendance; classroom performance
Media employed	Multimedia computers, projector, laser pointers, blackboard,
	chalks, teachers pointer
Reading list	1. Required books
	[1] TANG Yubin. Water Pollution Controlling Engineering
	(1st edition). Harbin: Harbin Institute of Technology Press,
	2006.
	2. Reference books
	[1]. GAO Yanyao. Water Pollution Controlling Engineering
	(3 rd edition). Beijing: High Education Press, 2007.
	[2] DING Huanru. Industrial Water Treatment Engineering.
	Beijing: Tsinghua University Press, 2005.
	J 8 8 8 8 8 9 8 9
	[3] Wasterwater Engineering: Treatment and Reuse (4 th
	[3] Wasterwater Engineering: Treatment and Reuse (4 th
	[3] Wasterwater Engineering: Treatment and Reuse (4 th edition), Metcalf & Eddy, Inc. Beijing: Chemical Industry

Equipment Fault Diagnosis	
Competence field	Electives
Module designation	Equipment Fault Diagnosis
Code, if applicable	11001890
Subtitle, if applicable	
Semester(s) in which the module	7 th semester
is taught	
Person responsible for the module	Associate Professor SAI Qingyi
Lecturer	Associate Professor ZHAO Jun
	Associate Professor LU Wei
	Lecturer SUN Li
	Lecturer YANG Jie(M)
Language	Chinese
Relation to curriculum	Equipment Fault Diagnosis is a course offered to seniors of Process Equipment and Control Engineering. This course introduces machine fault types, mechanism, performance characteristics and method of prevention and cure for the various rotating machines and reciprocating pumps in the fields of chemical, petrochemical, electric power, steel and aviation. It focuses on various high parameters of rotating machines, on the base of vibration fault diagnosis. It includes the mechanism and characteristics of various unbalanced faults and the self-excited vibration of high-speed rotors stated by theory and experience, diagnostic analysis method and prevention measures of fault vibration of reciprocating compressors and pipelines, fault diagnosis of various pump components, fault principle, the signal characteristics and the fault detection method of gear and rolling bearing, vibration signal analysis technique, etc
Type of teaching, contact hours	signal analysis technique, etc. Target students: senior of Process Equipment and Control Engineering program Type of teaching: theoretical teaching Contact hours: 48 hours Of which, Theoretical teaching: 48 hours Size of class: No more than 60 people for theoretical teaching
Workload	Workload= 90 hours
	Contact hours = 48 hours
	Self-study hours = 42 hours
Credit points	3.0
Requirements according to the	Only students with class attendance rate over 2/3 and
examination regulations	assignment completion rate over 2/3 are allowed to take the

University of Shanghai for Scie	exam.
Recommended prerequisites	Probability Theory and Mathematical Statistics, Process
1	Fluid Machinery, Design of Process Equipment, Process
	Principle and Equipment
Module objectives/intended	Module objectives:
learning outcomes	The task of this course is to enable students to master general
	fault diagnosis methods, to understand fault prevention and
	control measures, and to upgrade the abilities of equipment
	design, manufacture, installation, maintenance and
	management. Specific objectives include:
	• Knowledge: Machine fault types, mechanism,
	performance characteristics and method of prevention
	and cure for the various rotating machines and
	reciprocating pumps in the fields of chemical,
	petrochemical, electric power, steel and aviation.
	• Skills: Analysis of various unbalanced faults and the
	self-excited vibration of high-speed rotors stated;
	diagnostic analysis of fault vibration of reciprocating
	compressors and pipelines; fault diagnosis of various
	pump components; fault detection of gear and rolling
	bearing.
	• Competences: Develop abilities in equipment design,
	manufacture, installation, maintenance and
	management; be able to diagnose various rotating
	machines faults with high parameters.
Content	Part A. Theoretical teaching (48 contact hours; 42 self-
	study hours)
	Chapter 1 Introduction (3 contact hours; 1.5 self-study
	hours)
	• The purpose of equipment fault diagnosis and meaning;
	• The type of equipment failure and condition monitoring
	technology;
	• Equipment fault state recognition method;
	Chapter 2 Equipment fault state recognition method (6
	contact hours; 4.5 self-study hours)
	• Basic knowledge of signal processing;
	• Vibration signal graphics processing of commonly used
	rotating machinery; *
	• The time-frequency analysis of signals; *
	Chapter 3 Fault diagnosis of rotation machinery (9 contact
	hours; 7.5 self-study hours)
	• The rotor imbalance fault diagnosis;
	Misalignment rotor fault diagnosis; *

	 Sliding bearing fault diagnosis; *
	• The rotor rubbing fault diagnosis; *
	• Floating ring seal of fault diagnosis; *
	• Vane fluid vibration fault diagnosis of the machine; *
	• The self-excited vibration of high speed rotating
	machinery unstable failure analysis method; *
	Chapter 4 The fault analysis and pipeline vibration of
	reciprocating compressor (9 contact hours; 9 self-study
	hours)
	• Reciprocating compressor fault type and the cause of
	the problem; **
	• The measurement and fault analysis of the indicator
	diagram and the valve motion principle; **
	• Air pressure fluctuation and pipeline vibration of
	compressor; **
	Chapter 5 Gear fault diagnosis (6 contact hours; 6 self-
	study hours)
	• Common gear fault;
	• Gear fault vibration diagnosis; *
	• The fault diagnosis of gear noise; *
	Chapter 6 Fault diagnose of rolling bearing (6 contact
	hours; 4.5 self-study hours)
	• Fault form and the cause of rolling bearing;
	• Rolling bearing fault detection method; *
	• The fault diagnosis of rolling bearing vibration;*
	Chapter 7 The application of nondestructive testing
	technology in equipment diagnosis (6 contact hours; 6 self-
	study hours)
	• Sample analysis techniques in the diagnosis of
	equipment;
	• Acoustic emission testing technology in the diagnosis
	of equipment;
	Chapter 8 The application of modern intelligent diagnosis
	technology (3 contact hours; 3 self-study hours)
	• Fault diagnosis expert system;
	• Application of fuzzy mathematics in fault diagnosis; *
	• Application of neural network in fault diagnosis; *
	Part B. Experiment / practice teaching (0 hour)
Study and examination	Final score includes: usual performance (30%) and final
requirements and forms of	exam (open-book written examination) (70%)
examination	Usual performance includes: assignment and attendance rate

	chalks
Reading list	1. Required books
	[1] SHEN Qinggen. Equipment Fault Diagnosis (1 st
	edition). Beijing: Chemical Industry Press, 2010.
	2. Reference books
	[1] WANG Jiangping. Mechanical equipment fault
	diagnosis technology and its application (1 st edition). Xi'an:
	Northwestern Polytechnic University Press, 2001.
	[2] ISERMANN Rolf. Fault-Diagnosis Systems (1st
	edition). Berlin: Springer Press, 2006
	3. Other materials
	[1] PPT courseware (self-compiled)
	[2] Supplementary new energy management teaching
	materials (self-compiled)

Foreign Language

Fundamental English

Competence field	Language Teaching
Module designation	Fundamental English
Code, if applicable	15002110
Subtitle, if applicable	
Semester(s) in which the module is	1 st semester
taught	
Person responsible for the module	Associate Professor LIN Shangling
Lecturer	Associate Professor DONG Yuping
	Associate Professor LIN Shanling
	Associate Professor YANG Tao
	Associate Professor NI Xiujing
	Associate Professor ZHANG Ziqin,
	Lecturer HU Yinping,
	Lecturer ZHENG Dahu
	Lecturer ZHANG Wuhan,
	Lecturer WEN Yan
	Lecturer LIU Sha,
	Lecturer XUE Xiangying
	Lecturer DENG Yongping,
	Lecturer CHEN Yonggang
	Lecturer HUANG Chen,
	Lecturer QIAO Xiaohong
	Lecturer PAN Yuhua,
	Lecturer MA Xiaohong
	Lecturer CHEN Shuying
Language	English
Relation to curriculum	Fundamental English is a prerequisite course for Intensive
	English. It belongs to the fundamental course of college
	English and is a required course to all the non-English majors
	in the university. It aims to lay a solid foundation for the
	students' learning of listening, speaking, reading, writing and
	translation skills via step-by-step and systemic training. This
	course is divided into five modules: Pronunciation,
	Vocabulary, Grammar, Listening, Reading and Writing.
	Each module focuses on one special area of essential English
	knowledge or skill. This course and other College English
	serial courses jointly comprise the complete English
	curriculum for non-English majors, which is designed to help
	the students master English as a handy tool to communicate
	effectively and efficiently both in life and at work.

University of Shanghai for Science	
Type of teaching, contact hours	Target students: Non-English majors
	Type of teaching: Most of the time is for lectures, and some
	time is for classroom presentations and discussions
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 48 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 0 hour
	Size of class: 40-60 students
Workload	Workload = 48 hours
	Contact hours $= 48$ hours
	Self-study hours $= 0$ hours
Credit points	2.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over $2/3$ are allowed to take the exam.
Recommended prerequisites	None
Module objectives/intended	Module objectives:
learning outcomes	The general objective of learning college English is to use
	the English language in practice. Fundamental English aims
,	to help students to grasp the basic knowledge and skills in
	communication with people around the world.
	• Knowledge: Pronunciation and spelling rules of
	English words, grammar rules, discourse rules, English
	speech and writing styles, intercultural communication
	principles.
	 Skills: Basic listening, speaking, reading, writing and
	translation skills.
	 Competences: Being able to express one's opinions
	both orally and in the written form.
Content	Part A. Theoretical teaching (48 contact hours)
Coment	Unit 1: Pronunciation Learning (10 contact hours)
	 Vowels and consonants.*
	 Pronunciation and spelling rules of English words.* Deduced counds *
	Reduced sounds.*Liaison.*
	Assimilation.*
	 Stressed syllables.* Sectores and shuther **
	• Sentence stress and rhythm.**
	• Intonation and attitude.*
	• Pronunciation guides for different dialect speakers.
	Unit 2: How To Expand English Vocabulary (8 contact
	hours)
	• Root, prefix and suffix**

	e and recimology
	• Synonym, antonym, homonym, homograph*
	• Hyponym*
	Clans of English words
	Unit 3: Grammar Rules and English Writing (10 contact
	hours)
	• What functions do English words play in a sentence*
	• How to write English sentences correctly **
	• How to write English sentences persuasively*
	• How to write a paragraph in English*
	• How to write expository essays *
	• How to write persuasive essays*
	Unit 4: Reading Skills (10 contact hours)
	• Lesson 1 Learning a language *
	Useful reading skills: Skimming, scanning and perusing
	 Lesson 2 Growing up*
	Useful reading skills: How to guess the meaning of new
	words
	• Lesson 3 Care of the elderly*
	Useful reading skills: How to understand the rhetorical
	devices
	 Lesson 4 Parents and children*
	Useful reading skills: How to recognize the author's
	opinions
	 Lesson 5 Relationships and communication*
	Useful reading skills: How to find out the supporting
	details
	• Lesson 6 College life**
	Useful reading skills: How to do critical reading
	Unit 5: Translation Skills (10 contact hours)
	• Similarities and difference between English and
	Chinese.**
	• Basic rules for translation and a translator.**
	• Translation by adding words.*
	 Translation by omitting words.*
	• Translation by adjusting the order of sentences.*
	• Translation by converting the sentence patterns.*
	Part B. Experiment / practice teaching (0 hour)
Study and examination	After-class exercises should be completed by students
requirements and forms of	independently.
examination	Usual performance accounts for 50%, consisting of
	attendance, assignments and mid-semester examination;
	final exam (oral exam and closed book written exam)
	accounts for 50%.

Media employed	PPT courseware, multimedia computers, projectors, laser
	pens, blackboards, etc.
Deading list	1. Recommended book
Reading list	
	[1] Qin Xiubai, Jiang Jingyi, Integrated Course Book 1, New
	Century College English, Shanghai Foreign Language
	Education Press, 2012.
	2. Reference books
	[1] Zheng Shutang, Listening and Speaking Book 1, New
	Horizon College English, Foreign Language Teaching and
	Research Press, 2011.
	[2] Shu Dingfang, Fast Reading Book 1, New Century
	College English, Shanghai Foreign Language Education
	Press, 2012.
	[3] Huang Yuanshen, Qin Xiubai, Reading Book 1, New
	Century College English, Shanghai Foreign Language
	Education Press, 2012.
	[4] Tu Pei, Practical Course of English Pronunciation,
	Foreign Language Teaching and Research Press, 2005.
	3. Other resources
	[1] http://open.163.com/.
	[2] http://ocw.mit.edu/courses/writing-and-humanistic-
	studies.
	[3] http://www.bbc.com/.
	[4] http://edition.cnn.com/.

ntensive English	
Competence field	Language Teaching
Module designation	Intensive English
Code, if applicable	15002120
Subtitle, if applicable	
Semester(s) in which the module	2 nd semester
is taught	
Person responsible for the module	Lecturer LI Qin
Lecturer	Lecturer ZHAO Dan
	Lecturer HE Zheng-ye
	Lecturer SHI Yi-li
	Lecturer HUANG Chen
Language	English
Relation to curriculum	Intensive English is a follow-up course of Fundamental
	English and is a required course to non-English major
	undergraduates. Learning a language should be a long-term
	and continuous process. Intensive English, as an essential
	link of the whole process, focuses mainly on the
	reinforcement of basic knowledge and skills imparted and
	acquired in Fundamental English and makes effort on
	preparing the students for advanced Interactive Practical
	English. The two courses of Fundamental English and
	Intensive English jointly provide a solid groundwork for
	students in terms of grammar, vocabulary, methodology
	and so on. Intensive English is an important transition from
	newly admitted college students, who are usually confused
	and troubled by the different environment, psychologically,
	physically and academically, and struggle with the
	adaption to the new. Hence Intensive English is all the more
	important now that they have been acclimated and know
	better how to learn English in college. Intensive English is
	supposed to be a highly yielding phase
Type of teaching, contact hours	Target students: non-English major undergraduates
	Type of teaching: Most of the time is for lectures, and some
	time is for classroom discussions and group work
	Contact hours: 48hours
	Of which,
	Theoretical teaching: 48 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 0 hour
XX7 11 1	Size of class:40-60 students
Workload	Workload = 48 hours
	Contact hours = 48 hours

University of Shanghai for Scier	ice and Technology
	Self-study hours = 0 hours
Credit points	2.0
Requirements according to the	Students with class attendance rate over 2/3 and assignment
examination regulations	completion rate over 2/3 are allowed to take the exam.
Recommended prerequisites	Fundamental English
Module objectives/intended	Module objectives:
learning outcomes	Intensive English is a required fundamental course for all
/	non-English major undergraduates. Its goal is to develop
	students' English in a well-rounded way, especially in
	listening and speaking.
	• Knowledge: students are required to master the
	grammar rules not only in reading comprehension as
	they did in high school but also in accurate translation
	and composition writing; largely expand their
	recognizable vocabulary and enhance their awareness
	of correct usage and frequent collocations of core
	vocabulary; acquire necessary knowledge about the
	culture of English-speaking countries, especially that
	of America and the UK, communication-related
	etiquette and signs and cues of socializing in culturally
	different everyday life; learn some basics of paragraph
	translation and how it differs from sentence translation
	in translating strategies and skills; use English as a
	tool to have some knowledge about various fields in
	the reading materials.
	• Skills: be able to read articles of various genres and
	on various topics including humanities and popular
	science and common technology; be able to
	understand listening materials of all kinds of topics of
	everyday life and academic issues on the mediate
	level; be able to do paragraph translation on general
	topics and academic issues of the common kinds; be
	able to express themselves orally in quite fluent and
	accurate English.Competences: by taking the course of English Band
	2, students are expected to acquire certain skills in
	listening comprehension, speaking, reading and
	translating, so as to lay the foundation for the study of
	follow-up advanced English. Besides, students are
	supposed to promote their intercultural
	communication awareness and competence. By virtue
	of having abundant group work and individual tasks,
	students are also expected to be more autonomous and
	statemes are also expected to be more autonomous and

University of Shanghai for Scier	ice and Technology
	ready for the follow – up courses which requires more
	self-teaching and self-discipline. Accurate written
	English and fluent spoken English is one of the
	necessary conditions required for enterprise talents.
Content	Part A. Theoretical teaching (48 contact hours)
	Unit 1: Clarification and Orientation (8 contact hours)
	• Self-introduction;*
	• Clarification of the course English Band 2 including
	the scope and flow of lectures, requirements on the
	students, evaluation system, routine tasks and required
	reading materials;**
	• Orientations on how the goal of English Band 2 is
	supposed to be achieved and what they are expected
	to do;*
	• Sectioning students into groups.
	Unit 2: Routine Lectures (12 contact hours)
	• Pre-reading assignments;
	• Checking pre-reading assignments; introduction of
	back-ground information; explanation of
	terminologies or peculiar concepts, theme-related
	discussion;*
	• Global reading: analysis of the structure of passages,
	patterns and skills of writing, etc.;**
	• Detailed reading: zooming into important words and
	expressions, checking the understanding of or
	explaining difficult sentences, notes and lectures on
	features of the passage like rhetorical devices,
	effective persuasion, smooth narration and vivid
	description; **
	• After-reading: checking their grasp of required
	information and knowledge; further discussion of the
	same topic from a different but related perspective;*
	• Extensive reading: supplementary reading material
	with tasks designed for group work or self-study; *
	• Listening exercises including situation-based and
	function-based tasks*
	Unit 3: Mid-term Exam and Preparation & Review(8)
	contact hours)
	• Review of the materials learnt so far and key language
	points and skills;*
	 Review of the test paper and reflection on the
	problems to be worked on and plans for future
	improvement; *
	mprovement,

	ice and Technology
	 Unit 4: Routine Lectures (12 contact hours) Pre-reading assignments; Checking pre-reading assignments; introduction of back-ground information; explanation of terminologies or peculiar concepts, theme-related discussion;* Global reading: analysis of the structure of passages, patterns and skills of writing, etc.;** Detailed reading: zooming into important words and expressions, checking the understanding of or explaining difficult sentences, notes and lectures on features of the passage like rhetorical devices, effective persuasion, smooth narration and vivid description; ** After-reading: checking their grasp of required information and knowledge ; further discussion of the same topic from a different but related perspective;* Extensive reading: supplementary reading material with tasks designed for group work or self-study; * Listening exercises including situation-based and function-based tasks*
	 Extensive reading: supplementary reading material with tasks designed for group work or self-study; * Listening exercises including situation-based and
	• Oral exam
	Part B. Experiment / practice teaching (0 hour)
Study and examination requirements and forms of examination	After-school exercises should be completed by students independently after each class. Usual performance accounts for 50%, consisting of assignments, mid-semester examination and attendance; final exam (closed book written examination) accounts for 50%.
Media employed	PPT courseware, multimedia computers, projectors, laser pens, blackboards, etc.
Reading list	 Recommended book Longman Dictionary of Contemporary English, The Commercial Press, first edition,1998. Wang Wenchang, A Dictionary of English Collocations, Modern Press, 1994 Ma Degao, New Requirements for the Vocabulary of CET-4, Foreign Language Education Press, 2009 Yu Minhong, Root Associative Memory for the

University of Shanghai for Science	ce and Technology
	Vocabulary of CET-4, Qun Yan Publishing House,
	2013.
	[5] Qiao Zhigao, A New Interpretation of American
	English, Guangxi Normal University Press.
	2. Reference books
	[1] Kate Fox. Watching the English——The Hidden
	Rules of English Behavior. Hodder and Stoughton
	Ltd. 2004
	[2] Lin Yu-tang. My Country and My People. Foreign
	Language Teaching and Research Press. 2009.

University of Shanghai for	
Interactive Practical Englis	
Competence field	Language Teaching
Module designation	Interactive Practical English
Code, if applicable	15002130
Subtitle, if applicable	
Semester(s) in which the	3 rd semester
module is taught	
Person responsible for the	Associate Professor YU Jinhong
module	
Lecturer	Associate Professor GU Dinglan
	Associate Professor WEI Yongjia
	Lecturer HE Zhengye
	Lecturer JIN Zhaohui
	Lecturer LI Qin
	Lecturer SHI Yili
	Lecturer ZHAO Dan
Language	English
Relation to curriculum	Interactive Practical English is a follow-up course of Intensive
	English. It belongs to the fundamental course of college English
	and is a required course to all the non-English majors in the
	university. This course is a connecting link between Intensive
	English and Interactive Comprehensive English, focusing on
	the continuous promotion of students' language competence in
	listening, speaking, reading, writing and translation. After
	learning the courses of Fundamental English and Intensive
	English, students have had certain language foundation in all
	these aspects. In the 3 rd level, they should be provided with more
	practice in them, so that they can acquire more competence and
	confidence in using English as a communicative tool and get
	prepared for the further study of English. It provides the reading
	and practice materials with a higher level of difficulty, requiring
	students' larger vocabulary, stronger comprehensive and
	thinking ability and more efforts in writing. The materials are
	up-to-date and thought-provoking, focusing more on critical
	thinking instead of just reading and understanding, therefore the
	students must have a good language comprehensive ability and
	try to think in English, completing the transition from just
	understanding to thinking, so as to lay the foundation for the
	study of Interactive Comprehensive English.
Type of teaching, contact	Target students: Non-English majors of the 3 rd semester
hours	Type of teaching: Lectures, discussions and students'
110415	presentations
	Contact hours: 48 hours
	Contact nouis. 40 nouis

University of Shanghai for Science and Technology		
	Of which,	
	Theoretical teaching: 48 hours	
	Experiment / practice teaching: 0 hour	
	Computer practice: 0 hour	
	Size of class: 40-60 students	
Workload	Workload = 48 hours	
	Contact hours = 48 hours	
	Self-study hours $= 0$ hours	
Credit points	2.0	
Requirements according to	Students with class attendance rate over 2/3 and assignment	
the examination regulations	completion rate over 2/3 are allowed to take the exam.	
Recommended prerequisites	Fundamental English; Intensive English	
Module objectives/intended	Module objectives:	
learning outcomes	The general objective of learning college English is to use the	
/	English language in practice. In the study of Interactive	
	Practical English, the students should be equipped with more	
	profound ability to understand and think critically in English,	
	and get prepared for further English learning.	
	• Knowledge: students are required to master the reading	
	and listening materials the course has provided and obtain	
	the corresponding vocabulary.	
	• Skills: be able to understand materials exposed, such as	
	letters, emails, news, magazines, and videos, etc. be able	
	to describe a fact or a phenomenon, give presentations, and	
	express ideas, proposals, and suggestions.	
	• Competences: by learning this course, students are	
	expected to acquire certain skills in listening, speaking,	
	reading writing and translation, so as to lay the foundation	
	for the further study of follow-up courses and use the	
	language as a communicative tool. Just acquiring the	
	vocabulary is not enough, though it is very important in	
	English learning. In the study of this level, students should	
	not be staying at the vocabulary level, they should be	
	thinking in an English way and understand English	
	materials more profoundly and critically. They should be	
	expressing themselves with more confidence and more	
	fluently besides catching the listening materials and	
	understanding the reading materials.	
	1. Vocabulary: to master 4500-5000 words and	
	expressions;	
	 Listening: to understand the lecture in the class or on 	
	general topics and daily conversations;	
	3. Speaking: to talk fluently in English with foreigners	

University of Shanghai for So	sience and Technology
	by using certain conversation strategies, discuss on a
	topic and give a presentation after preparation;
	4. Reading: to understand English articles of medium
	difficulty, grasp the main idea and details, identify the
	attitude and comment with effective reading
	techniques;
	5. Writing: to employ writing skills to write a 120-150-
	word article on a general topic within 30 minutes and
	describe the experiences, facts, attitudes and feelings
	well, with no big grammatical mistakes and
	ambiguity.
	6. Translation: to translate Chinese into English or vice
	versa with translation skills and remain faithful to the
	original.
Content	Part A. Theoretical teaching (48 contact hours)
	Unit 1: Friendship (6 contact hours)
	Background information.
	• Organization of the passage**
	• Text understanding, words and expressions **
	• Discussion**:
	1. What are your criteria for making friends?
	2. What can we do to keep friendship as long as possible?
	Presentation*
	• Exercises** (self-study)
1	Unit 2: Love (8 contact hours)
	• Background information.
	• Organization of the passage**
	• Text understanding, words and expressions **
	• Discussion**: Now many young people fall in love when
	they are college students. Some people think it a good thing
	for college students to experience love, and some think the
	opposite. What is your opinion? If it is good, what are the
	positive effects campus love may produce on college
	students? If it is bad, then what are the negative effects?
	Presentation*
	• Exercises** (self-study)
1	Unit 3: Happiness (10 contact hours)
	Background information.
	• Organization of the passage**
	• Text understanding, words and expressions **
	• Discussion**: What do you think are the keys to
	happiness? Why?
	Presentation*

University of Shanghai for Science and Technology Exercises** (self-study) **Unit 4:** Health (8 contact hours) Background information. Organization of the passage** • Text understanding, words and expressions ** • Discussion**: What do you think are the criteria of being • healthy? Presentation* Exercises** (self-study) **Unit 5:** Education (10 contact hours) Background information. • Organization of the passage** Text understanding, words and expressions ** • Discussion**: 1. What is your idea of an ideal university life? 2. How does education improve your life? 3. How does cyber education benefit students? Presentation* Exercises** (self-study) Unit 6: Intercultural Communication (6 contact hours) Background information. • Organization of the passage** • Text understanding, words and expressions ** Discussion**: Do you sometimes find it difficult to adapt • to a new environment? Why? Please give some examples. Presentation* Exercises** (self-study) Part B. Experiment / practice teaching (0 hour) Study and examination After-class exercises should be completed by students requirements and forms of independently after each class. examination Usual performance accounts for 50%, consisting of assignments, mid-semester examination discussion, presentation and attendance; final exam (closed book written examination accounts for 40% and oral test accounts for 10%.) PPT courseware, multimedia computers, projectors, laser pens, Media employed blackboards, etc. Reading list Recommended book [1] Qin Xiu bai, Zhang Fengchun, Zooming in: An Integrated English Course, Shanghai Foreign Language Education Press, 2007 [2] Qin Xiubai, Huang Yuanshen, Learning to Read: An Reading English Course, Shanghai Foreign Language Education Press, 2008

[3] Qin Xiubai, Shu Dingfang, Reading Faster, Shanghai
Foreign Language Education Press, 2007
[4] Susan Stempleski, Yang Huizhong, Video Course, Shanghai
Foreign Language Education Press, 2007

Reading and Writing in	Technical English
Competence field	Language teaching
Module designation	Reading and Writing in Technical English
Code, if applicable	17001612
Subtitle, if applicable	
Semester(s) in which the	3 rd semester
module is taught	
Person responsible for the	Professor TAO Leren
module	
Lecturer	Associate Professor XU Hongtao
	Lecturer LIU Ni
	Lecturer YANG Huinan
	Lecturer SUN Li
Language	Chinese/English
Relation to curriculum	Reading and Writing in Technical English is a basic course of
	Energy and Power Engineering program. Through this course,
	students can acquire systematic understanding of English subject
	(i.e, College English its recommended prerequisite), deeper
	understanding of professional English, understand basics
	methods of English reading and writing, get familiar with basic
	English sentence patterns and tenses, and master the English
	expression of technical term and professional knowledge. The
	course is designed to train students in English reading and writing,
	especially concerning the program itself, so as to broaden students
	mind and lay a foundation for further study.
Type of teaching, contact	Targeted students: undergraduates of Process Equipment and
hours	Control Engineering and related programs
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 48 hours
	Experiment / practice teaching: 0 hours
	Computer practice: 0 hour
	Size of class: no more than 60 people for theoretical teaching
Workload	Workload = 48hours
	Contact hours $= 48$ hours
	Self-study hours =0 hour
Credit points	2.0
Requirements according to	Only students with class attendance rate over 2/3 and assignment
the examination	completion rate over 2/3 are allowed to take the exam.
regulations	
Recommended	College English
prerequisites	

Reading and Writing in Technical English

Module	Module objectives:
objectives/intended learning outcomes	 Knowledge: Introduction of basic procedures and methods for English reading and writing. Improve students' ability in listening comprehension, speaking, reading and writing through this course. The course is focused on explanation of words, phrases and relevant contents of this program with professional English teaching materials. The course is also focused on teaching of features and skills of professional English reading and writing. Skills: Students are able to read and quickly understand relevant specalized English literature; be able to translate professional literature into Chinese; be able to translate professional Chinese texts into English with the help of dictionary; be able to preliminarily communicate in English; be able to write abstract of Bachelor Thesis in English. Competences: Students are expected to be able to read professional literature so as to be able to solve specialized problems in future. Students are also expected to acquire
	capabilities in English writing, listening and speaking so as to
	be able to communicate with international counterparts.
Content	Part A. Theoretical teaching (48 contact hours)
	Chapter 1 Introduction to Thermal Science
	• Fundamental of Engineering Thermodynamics; *
	 Fundamental of Fluid mechanics; *
	• Fundamental of Heat Transfer.*
	Reading and Translation * (4 contact hours): Introduction to
	Thermal Science Fundamental of Engineering Thermodynamics;
	Fundamental of Fluid Mechanics; Fundamental of Heat Transfer.
	Video watching and practice* (2 contact hours)
	Chapter 2 Introduction to Boiler and Steam Turbine
	• Development of Utility Boiler; Fuel and Combustion;
	• System Arrangement and Key Components: Casing, Turbine
	rotors and Couplings, Blading, Condensing system;**
	• Supercritical steam turbine technologies.
	Reading and Translation * (4 contact hours): Introduction to
	Boiler and Steam Turbine: Development of Utility Boiler; Fuel and
	Combustion; System Arrangement and Key Components; Casing,
	Turbine Rotors and Couplings; Blading; Condensing system;
	Supercritical Steam Turbine Technologies
	Video watching and practice* (2 contact hours)
	Chapter 3 Introduction to Environmental Control and Renewable
	Energy
	• Ash Collection, Reducing Sulphurate Oxides and Nitric

University of Shanghai for Science and Technology Oxides Emission; * Nuclear Energy; • Renewable Energy. **Reading and Translation** * (4 contact hours): Introduction to Environmental Control and Renewable Energy Ash Collection; Reducing Sulphurate Oxides and Nitric Oxides Emission; Nuclear Energy; Renewable Energy Grammar ** (4 contact hours): grammar for EST writing 1-Sentence writing **Simulated writing ****1- Resume (2 contact hours) **Video watching and practice*** (2 contact hours) Chapter 4 Introduction to Instrumentation and Process Control Documentation and symbols; Essential instrumentation and Controls. Reading and Translation * (2 contact hours): Introduction to Instrumentation and Process Control Documentation and symbols; **Essential Instrumentation and Controls** Grammar ** (2 contact hours): Characteristics of writing in professional English Simulated writing ** (2 contact hours): 2- Cover letter Video watching and practice* (2 contact hours) Chapter 5 Introduction to Air conditioning and Refrigeration Air conditioning; Refrigeration;** • Cryogenics. Reading and Translation * (4 contact hours): Introduction to Air Conditioning and Refrigeration Air conditioning; Refrigeration; Cryogenics Grammar ** (2 contact hours): Writing practice of sentences and paragraphs Writing practice ** (2 contact hours): 3-Abstract I Video watching and practice* (2 contact hours) Chapter 6 Reading of latest professional literature Grammar ** (2 contact hours): Correction practice Writing practice ** (2 contact hours): 4-Abstract II Video watching and practice* (2 contact hours) and examination Study Final score is based on usual performance and examination. requirements and forms of usual performance: literature translation (10%); listening examination comprehension practice (10%); writing practice (10%);

final examination (closed book written exam and oral exam) accounts for 70% Multimedia computer, projector, laser pointer, blackboard, chalks, Media employed etc. Reading list 1. Required books

University of Shanghai for Science and Technology [1] CHEN Donglin et al. Specialty English for Energy & Power Engineering, Wuhan: Huazhong University of Science and Technology Press, 2009 [2] YAN Weiping et al. Specialty English for Thermal Energy and Power Engineering (3rd edition), China Electric Power Press, 2009 2. Reference books [1] ZHANG Yinping et al. English for Institutions of Higher Learning (1st edition), China Architecture & Building Press, 2005 [2] WANG Jianwu et al. EST Writing: Writing Skills and Model Essays (1st edition), Xian: Northwestern Polytechnical University, 2000 [3] ASHRAE fundamentals handbook 2001 [4] ASHRAE system and equipment handbook 2000 3. Experiment/computer practice instruction books Self-compiled 4. Other materials [1] PPT courseware (self-compiled) [2] Supplementary reading and writing teaching materials (selfcompiled)

Competence field	Language Teaching
Module designation	Interactive Comprehensive English
Code, if applicable	15003850
Subtitle, if applicable	
Semester(s) in which the	4 th semester
module is taught	
Person responsible for the	Associate Professor GU Dinglan
module	
Lecturer	Associate Professor ZHAO Wanzi
	Lecturer JIN Zhaohui
	Lecturer CHEN Yangtao
Language	Chinese & English
Relation to curriculum	Interactive Comprehensive English is a follow-up course of Interactive Practical English. These two courses belong to professional fundamental courses of college English and are required courses to non-English majors. It fosters the development of active English learners through a multifaceted approach to interaction: interaction with the text, with other learners, with teachers, with readings from sources beyond the classroom and with the self-access language learning center. This course features stimulating extensive reading, listening and writing combined with extensive practice provided by well designed tasks that develop both fluency and accuracy at this level. It incorporates the latest approaches to teaching productive strategies from learning vocabulary for different contexts, understanding the purpose and nature of different texts to learning how to access information in the media and over the Internet and learning the skill to make a presentation on various topics. Students gain confidence in their reading, writing, listening, speaking and translation abilities as they discover how to access information more easily from the press, over the Internet, and in their professions or fields of study. With this course, learners lay the foundation for the study of English for specific purpose (such as Intermediate Interpretation, American and British Culture, etc)
Type of teaching, contact	Target students: students of non-English majors
hours	Type of teaching: Some time is for lectures, and some time is for
	classroom discussions and presentations.
	Contact hours: 48 hours
	Of which,
	Theoretical teaching: 48 hours
	Experiment / practice teaching: 0 hour
	Computer practice: 0 hour

Interactive Comprehensive English

University of Shanghai fo	University of Shanghai for Science and Technology		
	Size of class: 40-60 students		
Workload	Workload = 48 hours		
	Contact hours = 48 hours		
	Self-study hours $= 0$ hours		
Credit points	2.0		
Requirements according to	Students with class attendance rate over 2/3, 32 hours of self-		
the examination regulations	access learning and assignment completion rate over 2/3 are		
	allowed to take the exam.		
Recommended	Fundamental English; Intensive English; Interactive Practical		
prerequisites	English		
Module	Module objectives:		
objectives/intended	• Knowledge: Students are required to master the reading and		
learning outcomes	listening materials the course has provided and obtain the		
/	corresponding vocabulary.		
	• Skills: This course provides for 1) The development of		
	active readers through interaction with a variety of texts, and		
	with authentic reading outside of the classroom. 2) Thematic		
	units featuring high-interest, level-appropriate, informative		
	topics that include texts about culture, science, the		
	environment, innovation, sports and entertainment. 3) A		
	skills and strategies overview of the comprehensive reading		
	skills and strategies in each chapter that feature the		
	development of critical thinking and information processing.		
	4) Opportunities for personal reading, writing, and speaking		
	activities. With this course the students are expected to		
	achieve the following learning outcomes:		
	• Competences:		
	Critical thinking: Effective analyze and evaluate evidence,		
	arguments, claims, and beliefs; Analyze and evaluate major		
	alternative points of view; synthesize and make connections		
	between information and arguments; interpret information		
	and draw conclusions based on the best analysis; Reflect		
	critically on learning experiences and processes; Solve		
	different kinds of unfamiliar problems in both conventional		
	and innovative ways; Identify and ask significant questions		
	that clarify various points of view and lead to better		
	solutions.		
	Communication: Articulate thoughts and ideas effectively		
	using oral, written, and nonverbal communication skills in a		
	variety of forms and contexts; Listen effectively to decipher		
	meaning, including knowledge, values, attitudes, and		
	intentions; Use communication for a range of purposes;		
	menuons, ose communication for a range of purposes,		

Ŵ

	Communicate effectively in diverse environments.
	Collaboration: Demonstrate ability to work effectively and
	respectfully with diverse teams; Exercise flexibility and
	willingness to be helpful in making necessary compromises
	to accomplish a common goal; Assume shared responsibility
	for collaborative work, and value the individual
	contributions made by each team member.
	Creativity: use a wide range of idea creation techniques;
	Create new and worthwhile ideas; Elaborate, refine, analyze,
	and evaluate original ideas to improve and maximize
	creative efforts; Develop, implement, and communicate new
	ideas to others effectively; Be open and responsive to new
	and diverse perspectives; incorporate group input and
	feedback into the work.
	Cross-Cultural Competence: Develop certain personal and
	interpersonal awareness and sensitivities, understanding
	certain bodies of cultural knowledge, and mastering a set of
	skills.
Content	Part A. Theoretical teaching (48 contact hours)
	Unit 1: Man and Society (6 contact hours)
	• Grasp the main idea; **
	• Appreciate the various techniques employed by the writer;
	**
	• Master the key language points and grammatical structures
	in the text; **
	• Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit;**
	• Do more research on man's footprints on the environment. *
	Unit 2: Man and Technology (6 contact hours)
	• Understand the main idea; **
	• Learn to use various resources for information; **
	• Grasp the key language points and grammatical structures in
	the text ;**
	• Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit;**
	• Do more research on the relationship between man and
	technology. *
	Unit 3: Knowledge and Knowledge Transfer (6 contact hours)
	• Grasp the main idea; **
	• Learn to use various techniques in writing more effectively
	and to use keywords for more efficient reading; **
	• Master the key language points and grammatical structures
	in the text; **

•	Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit;**
•	Develop the ability of solving problems.
Un	it 4: Work and Career (6 contact hours)
•	Understand the main idea and structure of the text; **
•	Appreciate the difference between formal speech and
	informal speech; **
•	Grasp the key language points and grammatical structures in
	the text; **
•	Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit;**
•	Do more research on the difference between work and career. *
Un	it 5: Fame and Success (6 contact hours)
•	Understand the main idea and the structure of the text; **
•	Learn to memorize words in association; **
•	Grasp the key language points and grammatical structures in
	the text; **
•	Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit;**
•	Do more research on celebrities' privacy. *
Un	it 6: Attitudes to Life (6 contact hours)
•	Grasp the main idea and the structure of the text; **
•	Appreciate the various techniques employed by the writer; **
•	Master the key language points and grammatical structures
	in the text **
•	Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit**
•	Do more research on the meaning of life. *
Un	it 7: Lifestyles (6 contact hours)
•	Understand the main idea; **
•	Appreciate the various techniques employed by the writer; **
•	Master the key language points and grammatical structures
	in the text **
•	Conduct a series of reading, listening, speaking and writing
	activities related to the theme of the unit**
•	Do more research on various lifestyles.*
Un	it 8: Literary Appreciation (6 contact hours)
•	Grasp the main idea and structure of the text; **
•	Appreciate the writing strategies employed by the author; **
•	Master the key language points and grammatical structures

University of Shanghai fo	or Science and Technology	
	in the text **	
	• Conduct a series of reading, listening, speaking and writing	
	activities related to the theme of the unit**	
	• Do more research on the role of literature in our life. *	
Study and examination	After-school exercises should be completed by students	
requirements and forms of	independently after each class.	
examination	Usual performance accounts for 50%, consisting of assignments,	
	class performance, mid-semester examination and attendance;	
	final exam (oral & written tests) accounts for 40%; self-access	
	learning accounts for 10%.	
Media employed	PPT courseware, multimedia computers, projectors, laser pens,	
	blackboards, etc.	
Reading list	1. Recommended book	
	[1] Qin, Xiubai and Liu, Jianbo, Zooming In: An Integrated	
	English Course (1st edition), Shanghai Foreign Language	
	Education Press, 2008	
	[2] Huang, Yuanshen, Learning to Read: An English Reading	
	Course 3 (1st edition), Shanghai Foreign Language	
	Education Press, 2008	
	[3] Zheng, Shutang, New Horizon College English: Speaking,	
	Listening and Viewing 3(2 nd edition), Foreign Language	
	Teaching and Research Press, 2011	

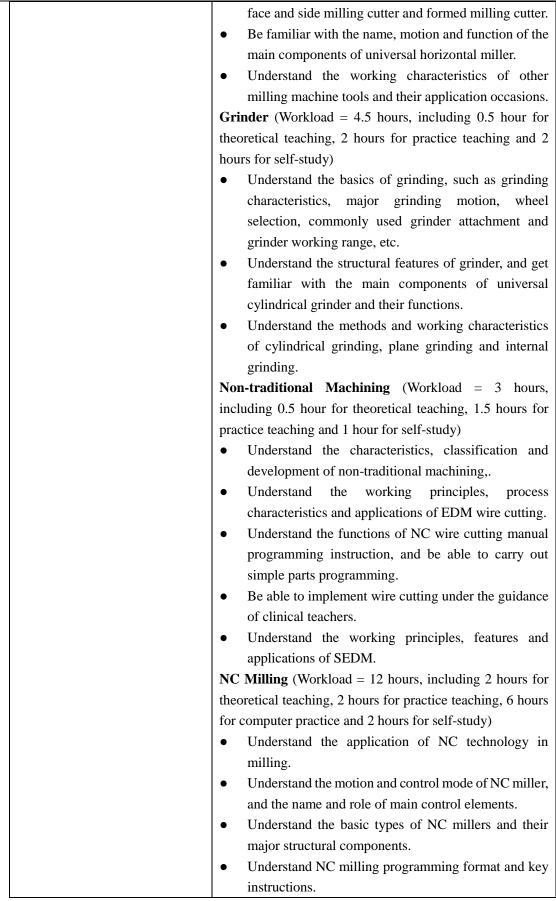
Practical Training

Metalworking Practice

Metalworking Practice 14100610 5 th semester Professor WANG Zhonghou Teachers of Engineering Training Center Chinese Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
5 th semester Professor WANG Zhonghou Teachers of Engineering Training Center Chinese Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
Professor WANG ZhonghouTeachers of Engineering Training CenterChineseMetalworking Practice is a technical fundamental coursefeatured by strong practice and the practice teaching linkthat familiarizes students of Process Equipment andControl Engineering program with machining productionprocess and develops practical operational capacity.Through the study of Metalworking Practice, students areexpected to master the general process of mechanical
Professor WANG ZhonghouTeachers of Engineering Training CenterChineseMetalworking Practice is a technical fundamental coursefeatured by strong practice and the practice teaching linkthat familiarizes students of Process Equipment andControl Engineering program with machining productionprocess and develops practical operational capacity.Through the study of Metalworking Practice, students areexpected to master the general process of mechanical
Teachers of Engineering Training Center Chinese Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
Teachers of Engineering Training Center Chinese Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
Chinese Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
Metalworking Practice is a technical fundamental course featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
featured by strong practice and the practice teaching link that familiarizes students of Process Equipment and Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
Control Engineering program with machining production process and develops practical operational capacity. Through the study of Metalworking Practice, students are expected to master the general process of mechanical
manufacture and the main process methods and process of metal machining, to get familiar with the methods of safe use and operation of various equipment and tools, to understand the use of new processes and technologies in mechanical manufacture, to acquire the skills of selection of simple parts machining methods and process analysis, and to develop the skills of understanding drawings and machining symbols and technical conditions. This course is designed to train students' habits of labor participation and
discipline compliance and rigorous style of theory-practice combination; this course helps to lay a solid foundation for the study of follow-up courses such as Principles and Design of Heat Exchanger, Design and Calculation of Boiler, Manufacturing Technology of Thermal Power Machinery, etc.
Target students: students of Process Equipment and Control Engineering program and related programs Type of teaching: Practice teaching and a small amount of after-school exercises Contact hours: 60 hours Of which, Theoretical teaching: 12 hours Experiment / practice teaching: 40 hours

University of Shanghai for Science and Technology		
	computer)	
	Size of class: 40-60 students	
Workload	Workload = 90 hours	
	Contact hours $= 60$ hours	
	Self-study hours = 30 hours	
Credit points	3.0	
Requirements according to the	Students with class attendance rate over 2/3 and assignment	
examination regulations	completion rate over 2/3 are allowed to take the exam.	
Recommended prerequisites	Fundamentals of Engineering Drawing, Mechanical	
	Principle and Mechanical Parts, Machine Design	
Module objectives/intended	Module objectives:	
learning outcomes	Through the study of this course, students are expected to	
/	preliminarily get exposed to practical production, so as to	
	lay the practical foundation for the follow-up study of	
	Process Principle and Equipment, Design of Process	
	Equipment and the related courses and future jobs related	
	to mechanical design, manufacture and management. This	
	course focuses on training students' independent operation	
	and in the premise where teaching requirements are	
	satisfied, such training is carried out in conjunction with	
	practical products.	
	• Knowledge: to enable students to learn about relevant	
	engineering terminology and technical documents, as	
	well as general mechanical manufacture process. Get	
	familiar with the common machining methods of	
	mechanical parts, and the working principles, typical	
	mechanism, tools, fixtures and measuring instruments	
	of mechanical parts as well as safe operation skills.	
	Understand the basic process knowledge and some	
	new processes related to mechanical manufacture and	
	the application of new technologies in mechanical	
	manufacture.	
	• Skills: students are expected to complete the basic	
	practical training, and acquire initial capacity of	
	process analysis and machining method selection, so	
	as to lay the foundation for the study of follow-up	
	courses and future jobs related to machine design. Get	
	familiar with main machining methods of metal and	
	the equipment and tools used, acquire initial	
	operational skills, and try as much as possible to get	
	exposed to new equipment, new processes and new	
	technologies.	
	• Competences: train students' attitude to labor,	

/	University of Shanghai for Science and Technology
---	---


University of Shanghai for Scien	
	innovation spirit and the scientific style of theory- practice combination; exercise students' practical operation capacity, and initially establish quality, cost, efficiency, safety and environmental protection awareness; enable students to adapt to the production environment, understand operational specifications and safe and technical specifications, and form engineering awareness; initially master traditional machining methods and modern NC machining methods; this course helps to lay a solid foundation for follow-up study of relevant mechanical courses and
	participation in scientific and technological innovation activities.
Content	 Turner (Workload = 16 hours, including 2 hours for theoretical teaching, 8 hours for practice teaching and 6 hours for self-study) Understand the basics of machining, especially
	 turning. Understand the relationship among parts machining precision, cutting specifications and machining economic efficiency. Understand the application of NC technology in turning and the concept of turning mechanization and automation production.
	 Get familiar with the name of horizontal lathe, the major components and their roles. Master turning operation methods, and be able to properly select tools, fixtures and measuring instruments and develop simple turning sequence according to the technical requirements of practice drawings.
	Fitter (Workload = 16 hours, including 2 hours for theoretical teaching, 8 hours for practice teaching and 6 hours for self-study)
	 Understand the status and importance of fitter in mechanical manufacture and equipment maintenance. Be familiar and able to independently select the tools, measuring instruments and other accessories for such operations as scribing, sawing, filling, drilling, reaming, countersinking, tapping and thread die cutting, scraping, grinding, assembly and disassembly, ato
	etc.Master the basic operations of fitter, and be capable of

奥

machining of simple parts according to parts drawing;
acquire certain practical skills in the selection of
machining methods, and the arrangement of process,
etc.
• Initially establish the concept of machine production
process, and have a complete understanding of map
reading, parts manufacture, machine assembly and
commissioning.
Casting (Workload = 16 hours, including 1 hour for
theoretical teaching, 9 hours for practice teaching and 6
hours for self-study)
• Understand the process and characteristics of casting
production.
• Understand the structure of sand mould, and the
relationship among parts, mould and castings.
• Be able to correctly adopt common tools for simple
two-box hand molding.
• Be able to identify casting process drawings and
understand the principles of their formulation.
• Understand the general process of casting molding.
• Understand common casting defects and their causes.
• Understand advanced casting methods and their
characteristics.
• Briefly understand special casting methods and
characteristics.
• Understand how to select the content of casting
process program and the steps.
Heat Treatment (Workload = 3 hours, including 0.5 hour
for theoretical teaching, 1.5 hours for practice teaching and
1 hour for self-study)
• Understand the grades, properties and uses of
common steel materials.
• Understand Rockwell hardness test method
commonly used in production.
• Understand spark identification method of steel and
the spark characteristics of common carbon steel and
cast iron.
• Understand common heat treatment equipment.
• Understand common heat treatment process methods,
types, purpose and application.
• Understand basic metallographic structure and
metallurgical analysis.
Forging (Workload = 3 hours, including 0.5 hour for

, 5	theoretical teaching 1.5 hours for prestice teaching and 1				
theoretical teaching, 1.5 hours for practice teaching and 1					
	hour for self-study)				
	• Understand the classification of metal pressure				
	machining and the concepts of forging and sheet metal				
	stamping.				
	• Understand carbon steel heating and forgings cooling.				
	• Understand the forging properties of metal and the				
	concept of forging fibrous tissue.				
	• Understand the types of main forging equipment and				
	the application occasions.				
	• Be familiar with the free forging by machine and the				
	main processes of sheet metal stamping.				
	• Be familiar with the structural differences between				
	free forgings and die forgings, and master the				
	principles for selection of these two forging methods.				
	Welding (Workload = 3 hours, including 0.5 hour for				
	theoretical teaching, 1.5 hours for practice teaching and 1				
	hour for self-study)				
	 Understand welding characteristics, classification and 				
	application.				
	understand welding equipment and the selection of				
	common welding electrodes.				
	• Understand the characteristics and applications of gas				
	welding flame, basic operation methods of gas				
	welding, and master the safe operation of gas welding.				
	• Introduce to students plasma cutting, laser cutting and				
	water jet cutting processes.				
	• Understand the characteristics of other common				
	welding methods and the application of bonding				
	technology.				
	• Introduce a variety of welding defects, including				
	welding stress and deformation.				
	Miller (Workload = 4.5 hours, including 0.5 hour for				
	theoretical teaching, 2 hours for practice teaching and 2				
	hours for self-study)				
	• Understand the basics of milling.				
	• Understand the function of common milling machine				
	accessories (dividing head, rotary table, vertical				
	milling head).				
	• Understand common tooth machining methods.				
	• Understand common milling cutters such as				
	cylindrical cutter, end mill, keyseat cutter, butt mill,				
	,				

	• Prepare simple parts machining process under the				
	guidance of clinical teachers, and independently				
	complete program input, feed-simulation and parts				
	milling.				
	• Understand the differences among NC machining				
	center, NC miller and NC lathe, and the application				
	range and working features of machining center.				
	 Understand the main components of NC machining 				
	 Understand the main components of NC machining center. 				
	NC Turning (Workload = 6 hours, including 1 hour for				
	theoretical teaching, 2 hours for practice teaching, 2 hours				
	for computer practice and 1 hour for self-study)				
	 Understand the basic principles of NC machining and 				
	the role of NC technology in turning.				
	 Understand the motion and control mode of NC lathe, 				
	and the name and role of main control elements.				
	• Understand the basic types of NC lathes and their				
	major structural components.				
	• Understand the differences between manual				
	programming and automatic programming, and get				
	familiar with the general format of manual				
	programming and the major instructions.				
	 Prepare simple parts machining process under the 				
	guidance of clinical teachers, and independently				
	complete program input, feed-simulation and parts				
	turning.				
	• Understand the major differences between full-				
	function NC lathe and ordinary NC lathe.				
	Technical Measurement (Workload = 3 hours, including 1				
	hour for theoretical teaching, 1 hour for practice teaching				
	and 1 hour for self-study)				
	• Understand the application of high-precision				
	measurement equipment.				
	• Understand the basic types and structural components				
	of high-precision measurement equipment.				
	 Under the guidance of clinical teachers, complete 				
	high-precision measurement of parts.				
Study and examination	The practice content and after-school exercises should be				
requirements and forms of	completed by students independently after each class.				
examination	Usual performance accounts for 70%, which consists of				
	practice performance, assignments and attendance; final				
	exam (closed book written examination) accounts for 30%.				
Media employed	PPT courseware, multimedia computers, projectors, laser				

	pens, blackboards, lathes, planers, millers, NC machine		
	tools, measuring instruments, welding equipment, casting		
	and forging equipment, etc.		
Reading list	1. Recommended book		
	[1] ZHU Zhen and WU Xiaozhu, Engineering Practice		
	and Training (2nd edition), Shanghai Science and		
	Technology Literature Publishing House, 2006		
	2. Reference books		
	[1] WU Xiaozhu and ZHU Zhen, Technical Surveying		
	Practice and Training (1st edition), Shanghai Science		
	and Technology Literature Publishing House, 2008		
	[2] ZHU Zhen and WU Xiaozhu, Metalworking Practice		
	Reports and Should-be-known Exercise Book (2nd		
	edition), Shanghai Science and Technology Press,		
	2008		

Comprehensive Experiment					
Competence field	Practical Training				
Module designation	Comprehensive Experiment				
Code, if applicable	11100470, 11100500, 11100440, 11100530				
Subtitle, if applicable					
Semester(s) in which the	7 th semester				
module is taught					
Person responsible for the	Professor WU Weidong				
module					
Lecturer	Associate Professor SU Wenxian				
	Associate Professor SHAN Yanguang				
	Associate Professor CHEN Eryun				
	Lecturer CHEN Liu				
	Lecturer NAN Guofang				
	Assistant Researcher HU Xiaohong				
	Assistant Experimentalist HUANG Xiaohuang				
	Assistant Experimentalist SHENG Jian				
	Assistant Experimentalist TIAN Chang				
	Assistant Experimentalist ZHANG Huichen				
	Assistant Experimentalist ZHOU Yanfang, etc., etc.				
SLanguage	Chinese				
Relation to curriculum	As one of the most important practical courses of Process Equipment				
	and Control Engineering program, Power Engineering Specialized				
	Experiment is a practical course matching theoretical course and is				
	taken after completion of all basic courses. With a focus on classic				
	technology and engineering practical application, the course enables				
	students to understand engineering practice, master engineering				
	practical skills and learn how to use theoretical knowledge to solve				
	engineering problems so as to complete engineering technical work.				
	The course may also help students learn about the present situation				
	of the field at home and abroad as well as advanced technology,				
	which lays a foundation for students' future work and study.				
Type of teaching, contact	Target students: seniors of Process Equipment and Control				
hours	Engineering program				
	Type of teaching: experimental teaching				
	Contact hours: 64 hours				
Workload	Workload= 120 hours				
	Contact hours $= 64$ hours				
	Self-study hours = 56 hours				
Credit points	4.0				
Credit points Requirements according					
	4.0				

Comprehensive Experiment

Recommended	University of Shanghai for Science and Technology mended Engineering Fluid Mechanics; Heat Transfer; Measurement and				
prerequisites	U	Control Technology of Power Engineering; etc.			
prerequisites	Contro	Control Technology of Power Engineering, etc.			
Module	Modul	e objectives:			
objectives/intended	 Knowledge: Measurement principles, technology and testing 				
learning outcomes					-
learning outcomes	rning outcomes method of specialized experiment of (Measurement and Control Technology of Po				
		computer Modeling Practic	-	-	
		besign of Process Equipmen		•	•
		tc.)	., 11000000	i interpre un	a Equipinoni,
		kills: Students	1	understand	the
		erformance/principles/appl:			
	_	chnology and inspection i			-
		quipment and Control			
		pecialized experiment me			
	-	nethods so as to improve			
		evelop experimental ope		-	•
		nalyzing and solving pract			
		nowledge.	iour proces	line of usin	8
		Competences: Develop stud	dents' prac	ctical ability	specialized
		xperimental skills and a	•		
		-	scientific experiment ability so as		
		meet demands for enginee		-	-
Content		riment teaching:			
	Experi	ments of Process Equipmer	nt and Cont	trol Enginee	ring program
	includ	es 4 basic energy and	power ex	periments	(A) and 12
	specia	lized equipment design exp	eriments (B).	
	NO.	Experiment	Contact	Self-study	
			hours	hours	
	A1	Steam turbine equipment	4	2	
		experiment*			
	A2	Pump performance test	4	4	
		experiment*			
	A3	Fan performance test	4	2	
		experiment*			
	A4	Boiler operation (thermal	4	4	
		balance) experiment*			
	B1	Small-scale refrigeration	4	4	
	device multi-parameter				
	automation test experiment*				
	B2	Gas turbine power	4	2	1
	generation system				
		-			

/	University of Shanghai for Science and Technology
---	---

		nce and Technology			1
	B3	EHD enhanced boiling heat	4	4	
		exchange experiment*			
	B4	Transcritical CO2 heat	4	4	
		pump water heater			
		performance test			
		experiment*			
	B5	Natural cycle boiler	4	4	
	20	hydrodynamic property			
		experiment*			
	B6	Boiler heating surface heat	4	4	-
	БО	-	4	4	
		transfer property			
		experiment*			-
	B7	Parallel pipe bundle flow	4	4	
		distribution experiment*			-
	B8	Vane natural frequency	4	4	
		measurement*			
	B9	Centrifugal compressor	4	2	
		test*			
	B10	Blade cascade incidence	4	4	
		characteristics experiment*			
	B11	Measurement of single span	4	4	
		rotor critical speed*			
	B12	Comprehensive heat	4	4	
		transfer performance			
		experiment*			
Study and examination	Usual	performance accounts for	50% of	final score	(attendance
requirements and forms		-			
of examination	participation in experiment process, experimental ability and experiment quality). Experimental report accounts for 50% of final				
	experiment quality). Experimental report accounts for 50% of final				
	score (understanding of experiment objectives / principles / equipment; results of experimental data; analysis of experimental				
		iem, results of experiment	ui uata, a	anary 515 01	experimental
Madia amployed	data)				
Media employed	Multimedia aided teaching				
Reading list	1. Required books				
	[1]. Energy Power Experimental Teaching Center. Experiment				
	Instruction Books for Process Equipment and Control Engineering				
	Program. USST, 2013				
	2. Reference books				
	[1]. TANG Jinwen. Thermal Measurement Technology. Chongqing:				
	Chongqing University Press, 2007				
	[2]. LÜ Chongde. Measurement and Handling of Thermal				
	Parameter (2 nd edition). Beijing: Tsinghua University Press, 2001				
	[3]. YANG Fengzhen. Basics of Power Machinery Testing. Dalian:				
	Dalian	University of Technology,	2005		

[4]. YA	V Zhaoda.	Testing	Technology	for	Thermal	and	Power
Machine	y. Beijing:	Machine	ery Industry P	ress	, 2005		

	nensive Course Design
Competence field	Practical Training
Module designation	Professional Comprehensive Course Design
Code, if applicable	11100271
Subtitle, if applicable	
Semester(s) in which	7 th semester
the module is taught	
Person responsible for	Associate Professor SU Wenxian
the module	
Lecturer	Associate Professor SU Wenxian
	Associate Professor YE li
	Lecturer LI Zeqiu
	Lecturer YANG Jie(M)
	Lecturer WANG Zhiyuan
Language	Chinese
Relation to curriculum	Student's project here is the course offered for senior students of
	Process Equipment and Control Engineering program. After taking
	Engineering Thermodynamics, Heat Transfer, Engineering Fluid
	Mechanics, Process Principle and equipment, Design of Process
	Equipment. Students can do the application case study which based on
	the theory and knowledge of Process Principle and equipment, Design
	of Process Equipment, etc. The main contents of the course are:
	Calculation and design of process flowsheet, and type selection and
	design of equipment structure (cooling tower, rectifying column, heat
	exchanger, reboiler, etc.). This course combines basic theories, basic
	skills and specialized knowledge. With reference of technical literature
	and manuals as well as specialized knowledge and skills, students may
	learn basic methods and procedures of equipment design which will lay
	a foundation for follow-up courses including Internship and Bachelor
	Thesis.
Type of teaching,	Target students: seniors of Process Equipment and Control
contact hours	Engineering program
contact nouis	Type of teaching: practice
	Contact hours: 4 weeks
	Theoretical teaching and experiment/practice teaching are arranged by
	instructors on the basis of each student and its team's specific project
	situation.
	Size of class: each instructor teaches 3-5 teams, each group 5-7
	students.
Workload	Workload= 120 hours
w of Kioau	
Credit points	4.0
1	

Professional Comprehensive Course Design

	ghai for Science and Technology
according to the examination regulations	complete all tasks carefully, listen attentively to instructions of teachers.
Recommended	Calculus; College Physics; College Chemistry; Engineering
prerequisites	Thermodynamics; Engineering Thermodynamics, Heat Transfer;
	Engineering Fluid Mechanics; Process Principle and equipment;
	Design of Process Equipment;
Module	Module objectives:
objectives/intended	As an important part of practice teaching of the specialty, Student's
learning outcomes	project is a comprehensive application of the theoretical courses. The
	object and task of the Student's project is enabling students to integrate
	theoretical knowledge with practical work, acquire deep understanding
	of the fields the specialty serve and understand the design process and
	technology of the field.
	• Knowledge: Through project, students may acquire deeper
	understanding of the specialty. Be able to conduct theoretical
	calculation, selection and design of different types of process unit
	in industrial production process.
	• Skills: Through project, students master basic principles and
	methods of major process analysis and equipment design of each
	field; develop student's ability in using basic theoretical
	knowledge, skills and specialized knowledge to analyze and solve
	engineering problems; cultivate students engineering design
	ability in design/calculation, drawing and technical documents
	development with reference to technical literature, documents and
	manuals.
	• Competences: Students may have a good sense of teamwork and
	self- learning capacity.
Content	Professional Comprehensive Course Design (4 weeks)
	Project contains two parts. one part is a two-week team work, in which
	team members should work together for analysis the project demand,
	find information, and then accomplish the process structure design. The
	other part is 2-week individual work, which one of the equipment in
	the entire flowsheet should be exhaustive analyzed and design.
	(1) Process demand analysis; **
	(2) Investigate process information, main equipment (structure,
	performance, configuration parameter and working principles),
	flowsheet layout and operation requirements/skills of each unit; **
	(3) Calculation of mass flowrate and thermal load; **
	(4) Unit equipment design and type selection
	(5) Drawing equipment design specifications; **
	(6) Accomplish the design instruction.**
Study and examination	At the end of project, every student need to hand in design instruction,
requirements and forms	which introduce the team work and individual work. And every team
requirements and forms	which introduce the team work and murvioual work. And every lean

of examination	gives a final presentation. Evaluation is based on students'		
	performance and the whole team's design work, quality of students'		
	presentation and defense.		
	Usual performance and individual design instruction account for 40%		
	of final score. Team report and presentation account for 60% of final		
	score		
Media employed	Multimedia computers, projector, laser pointers, blackboard, chalks		
Reading list	1. Required books		
	[1] Instructors recommend books to students according to specific		
	academic needs		
	2. Other materials		
	[2] PPT courseware (self-compiled) used by teachers for explanation		
	to students.		

Practical Training
Innovation and Entrepreneurship Project Training
11850010
7 th semester
Professor YANG Ailing
All teaching staff of this program
Chinese
As an innovation and entrepreneurship experimental and practice course, this course is designed to carry out innovation and entrepreneurship practical teaching at Energy & Power Engineering Experiment Teaching Center (National Experimental Teaching Demonstration Center) and production/education/research base jointly established by School of Energy & Power Engineering and enterprise. Under the guidance of teachers, students complete innovative work concerning scientific research, experiment and product development of Process Equipment and Control Engineering Program, which can develop students' abilities in innovation, entrepreneurship and practice. This is an innovation and entrepreneurship orientated course based on acquired basic theoretical knowledge and specialized experiment experience, demand for solutions to practical problems by students teams under instructions of teachers on selecting topic and engaging in practice independently). The course is focus on
developing students engineering practice and innovation abilities.
Targeted students: seniors of Process Equipment and Control Engineering program
Type of teaching: theoretical and practice teaching
Contact hours: 64 hours
Of which
Theoretical teaching: 8 hours
Experiment / practice teaching: 56 hours
Size of class: 60 people
Workload= 120 hours
Contact hours = 64 hours
Self-study hours = 56 hours
Self-study hours = 56 hours 4.0
4.0

Innovation and Entrepreneurship Project Training

ID 11	1	ience and	e ,	р ·	Г	
Recommended	Fundamentals of Engineering Drawing, Machine Design, Engineering					
prerequisites	Thermodynamics, Engineering Fluid Mechanics, Heat Transfer,					
	Comprehensive Experiment, etc.					
Module	Module objectives:					
objectives/intended	• K	nowledge	e: advanced technique, method	s and pro	cesse	d related
learning outcomes	to	Process 1	Equipment and Control Engine	eering pro	gram	n such as
	ad	lvanced	control strategies, advanced	product	ion	process,
	ad	lvanced n	nanufacturing, and optimal ope	erating pro	ocedu	ire.
	• SI	kills: Stud	lents are able to write a propos	al on resea	arch t	opic and
			lan and carry out innovative re			-
		-	lependently with innovation tea		-	-
	-		achining tool), multi-function			
		-	odule (experiment and meas	-		-
	-		experiment teaching platform (-	
			udents' abilities in innovation			
		-		-		-
			g practice as well as awaren	ess of in	nova	uon and
		trepreneu	-			
		-	ces: By taking innovation		-	-
	-		urse, students can learn how		•	
		-	nd innovative work with acq			
		-	, skills and specialized knowle	-		
			proposals on scientific rese	_		
	-		velopment with literature rev	view so a	is to	develop
	cr	eative thi				-
			nking and abilities in solving	g practica	l eng	-
	pr	oblems.		g practica	l eng	-
Content	pr			g practica	l eng	-
Content	pr	oblems. oretical t		g practica Contact		gineering
Content	pr 1. The	oblems. oretical t	eaching			gineering
Content	pr 1. The	oblems. oretical t	eaching	Contact	Sel	gineering
Content	pr 1. The	oblems. oretical t Theoret	eaching	Contact	Sel stu	gineering
Content	pr 1. The No.	oblems. oretical t Theoret	eaching ical teaching ion teaching module, multi-	Contact hours	Sel stu hor	gineering
Content	pr 1. The No.	oblems. oretical t Theoret Innovat functior	eaching ical teaching ion teaching module, multi-	Contact hours	Sel stu hor	gineering
Content	pr 1. Theo No.	oblems. oretical t Theoret Innovat functior module	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment	Contact hours	Sel stu hor	gineering
Content	pr 1. Theo No.	oblems. oretical t Theoret Innovat functior module teaching	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction	Contact hours	Sel stu hor	gineering
Content	pr 1. The No. 1	oblems. oretical t Theoret Innovat functior module teaching Researc	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction h on topic selection and	Contact hours 3	Sel stu hou 3	gineering
Content	pr 1. The No. 1	oblems. oretical t Theoret Innovat function module teaching Researc learning	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction th on topic selection and g proposal report	Contact hours 3	Sel stu hou 3	gineering
Content	pr 1. Thee No. 1 2	oblems. oretical t Theoret Innovat function module teaching Researc learning develop	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction h on topic selection and g proposal report ment	Contact hours 3 2	Sel stu hou 3	gineering
Content	pr 1. The No. 1 2 3	oblems. oretical t Theoret Innovat functior module teaching Researc learning develop Learnin	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction th on topic selection and g proposal report ment g plan development	Contact hours 3	Sel stu hou 3	gineering
Content	pr 1. Theo No. 1 2 3 2. Exp	oblems. oretical t Theoret Innovat function module teaching Researc learning develop Learnin	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction h on topic selection and g proposal report ment g plan development practice teaching	Contact hours 3 2 3	Sel stu hou 3 2 3	ineering
Content	pr 1. Theo No. 1 2 3 2. Exp	oblems. oretical t Theoret Innovat functior module teaching Researc learning develop Learnin	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction th on topic selection and g proposal report ment g plan development	Contact hours 3 2 3 Cont	Sel stu hou 3 2 2 3	ineering
Content	pr 1. Theo No. 1 2 3 2. Exp	oblems. oretical t Theoret Innovat function module teaching Researc learning develop Learnin	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction h on topic selection and g proposal report ment g plan development practice teaching	Contact hours 3 2 3	Sel stu hou 3 2 2 3	ineering
Content	pr 1. Theo No. 1 2 3 2. Exper	oblems. oretical t Theoret Innovat functior module teaching develop Learning develop	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction h on topic selection and g proposal report ment g plan development practice teaching Research on topic selection	Contact hours 3 2 3 Cont Hour	Sel stu hou 3 2 2 3	ineering lf- dy urs Self- study hours
Content	pr 1. Theo No. 1 2 3 2. Exper Exper Conte	oblems. oretical t Theoret Innovat functior module teaching develop Learning develop	eaching ical teaching ion teaching module, multi- n experiment teaching and simulation experiment g platform introduction th on topic selection and g proposal report ment g plan development practice teaching Research on topic selection 1. Introduce present situation	Contact hours 3 2 3 Cont Hour	Sel stu hou 3 2 2 3	ineering

Shanghai for Science and	lecinology		
	development level through		
	literature search and reading		
	(including intellectual and		
	technical standard situation);		
	economic construction and		
	social development		
	requirements		
	2. Make proposal on		
	innovative topics and technical		
	value of innovation		
	3. Make proposal on complete		
	innovation plan		
Experiment 2	Evaluation by classmates on	Contact	Self-
	report on topic selection	Hours	study
	report on topic belocition	110010	hours
Content and	Evaluate topic selection report	10	8
requirements	of three classmates	10	0
requirements			
	1. Whether report conforms to standard;		
	2. If innovative topics and		
	technical value of innovation		
	convincing		
	3. If innovation plan is feasible		0.10
Experiment 3	Implement innovative project	C ()	Self-
	and experimental validation	Contact	study
		Hours	hours
Content and	1. Innovation plan execution	24	20
requirements	2. Uncertainty analysis of		
	experiment		
	3. Scientific analysis for		
	innovation plan improvement		
	4. Patents writing and		
	application		
	5. Summary of results		
Experiment 4	Designing entrepreneurial plan	Contact	
	with innovation project	Hours	
Content and	1. Application and market	10	10
requirement	prediction		
	2. Design execution plan		
	3. Design finance plan		
	4. Analysis of economic and		
	social benefits		
	5. Write up business proposal		

entrensity of sharig	
Study and examination	Usual performance accounts for 30% of final score (theoretical course;
requirements and forms	attendance of discussion and experiment classes; completion).
of examination	Exams account for 30% of final score (proposal 20%; evaluation of
	classmates proposal 10%; execution and experimental report 30%;
	entrepreneurship plan 10%) (oral defense).
Media employed	Multimedia computer; projector; product model
Reading list	1. Required books
	[1] Handout on energy and environment innovation &
	entrepreneurship, USST
	2. Reference books
	[1] Study, Response and Insight Regarding Entrepreneurship Plan
	and Competition: Exploration and Practice of College Students
	Innovation & Entrepreneurship Education, ZHEN Bingzhang, LIU
	Dezhi, JIA Dongshui, WU Hong. China Earth Press, 2005
	[2] Innovation Entrepreneurship and Employment. FU Yun.
	Machinery Industry Press, 2009
	[3] Instruction Course on College Students Innovation &
	Entrepreneurship, DENG Zegong, China Communication Press,
	2004

Internship

Internship	
Competence field	Practical Training
Module designation	Internship
Code, if applicable	11100160, 11100031
Subtitle, if applicable	
Semester(s) in which the module	8 th semester
is taught	
Person responsible for the module	Professor CAI Xiaoshu
Lecturer	All teaching staff of this program
Language	Chinese
Relation to curriculum	Internship is a preparatory stage before Bachelor Thesis
	which is designed to allow students to integrate theoretical
	knowledge with practical work, acquire deep understanding
	of the related fields of Process Equipment and Control
	Engineering, and understand the production process and
	technologies of the program. On the basis of internship and
	requirements/contents of Bachelor Thesis, students may
	conduct technical material collection and research, and thus
	prepare for Bachelor Thesis.
Type of teaching, contact hours	Targeted students: seniors of Process Equipment and Control
	Engineering program
	Type of teaching: practice
	Contact hours: 10 weeks
	Theoretical teaching and experiment/practice teaching are
	arranged by instructors and enterprise technical personnel on
	the basis of each students specific internship
	Size of class: each instructor guides 3-5 students
Workload	Workload= 420 hours
Credit points	14.0
Requirements according to the	During internship, students shall follow all rules concerning
examination regulations	practice, labor administration and safety of the enterprise.
	Students shall complete all tasks carefully, listen attentively
	to instructions of enterprise mentors, take intern notes,
	communicate and discuss regularly with the in-unviersity
	supervisors.
	1: The students should fill in the "Internship Application
	Form" and "Students External Internship Safety
	Responsibility Book";
	2: The students should submit the internship notebook and
	internship report after the internship.
Recommended prerequisites	Complete all theoretical courses
Module objectives/intended	Module objectives:
learning outcomes	As an important part of practice teaching of the specialty,

ሧ

	internship is a preparatory stage before Bachelor Thesis. The
	object and task of internship is enabling students to integrate
	theoretical knowledge with practical work, acquire deep
	understanding of the related fields of Process Equipment and
	Control Engineering, and understand the production process
	and technologies of the program.
	• Knowledge: Through Internship, students may acquire
	deeper understanding of the specialty and the scope as well
	as significance of application of knowledge in practical
	work.
	• Skills: After internship, students may further
	understand product design method, production process,
	equipment process technology and
	principles/performance/parameters of major production
	equipment. Through site observation, students can
	understand production and technology of related fields so as
	to increase knowledge and develop competences.
	• Competences: Students may have a deeper impression
	of the enterprise associated with the specialty and deeper
	understanding of the relationship between enterprise
	production environment and other industry enterprise.
	During internship, students may receive social and specialty
	skills training integrating internship with social practice and
	thus lay a foundation for adaptation to different kinds of
	working environment and enterprise culture in the future. All
	these will help develop students' ability in future work and
	social practice.
Contant	1. Internship (10 weeks)
Content	
	Students go to production/manufacturing enterprise and
	equipment application enterprise for internship practice in
	the form of visit, on-site work, study and attending technical
	lectures, etc.
	(1) Give safety instructions. Learn about all kinds of
	production measures and rules of selected plant so as to
	guarantee safety, acquire production safety knowledge and
	develop relevant awareness*(3 days);
	(2) Learn about process, main equipment (structure,
	performance, configuration parameters and working
	principles), plant layout and operation requirements/skills of
	each post**(3 weeks);
	(3) Get familiar with the basic characteristics of the
	production and production process of enterprise; get familiar
	with the basic principles and methods of production process;

क्र

	understand design method of system and product **(2
	weeks);
	(4) Analyze process principles of energy & power
	production process engineering with acquired theoretical
	knowledge, especially the methods and measures involved in
	achieving overall production objectives such as high-
	production, high-quality, low consumption and low
	pollution** (2 weeks)
	(5) Understand the operation methods of all production
	process through video teaching, lecture, seminar and on-site
	visit; learn about technical parameter, performance,
	technical level and current situation of product ** (2 weeks)
	(6) Complete internship report independently according to
	the specific situation of the enterprise; prepare a topic for
	oral defense and report independently * (4 days)
Study and examination	During internship, instructors shall ask students to submit
requirements and forms of	internship report and organize exam. Evaluation of
examination	internship is based on students' performance (compliance
	with rules and evaluation of employees and technical
	personnel, 20%), quality of internship notes and report
	(30%), and the performance in the exam (50%). Score of
	internship is in hundred-mark system.
Media employed	Multi-media computer, projector, laser pointer etc.
Reading list	1. Required books
	[1] Instructors recommend books to students according to
	specific academic needs
	2. Other materials
	[2] PPT courseware (self-compiled) used by teachers and
	enterprise technical personnel for explanation to students.

Bachelor Thesis

Competence field	Bachelor Thesis
Module designation	Bachelor Thesis
Code, if applicable	1110011
Subtitle, if applicable	
Semester(s) in which the module	8 th semester
is taught	
Person responsible for the module	Associate Professor SU Wenxian
Lecturer	All teaching staff of this program
Language	Chinese
Relation to curriculum	It is arranged after completion of all specialized courses and
	is designed for consolidation of acquired theoretical
	knowledge and enhancing link between theory and practice.
	As the last important teaching activity, Bachelor Thesis
	requires students to use acquired knowledge to solve
	comprehensive practical technical problems.
Type of teaching, contact hours	Target students: seniors of Process Equipment and Control
	Engineering program
	Type of teaching: theoretical teaching; computer practice
	Contact hours: 12 weeks
	Theoretical teaching, experiment/practice teaching and
	computer practice are arranged by instructors on the basis of
	each student's specific project
	Size of class: each instructor teaches 3-6 students
Workload	Workload=480 hours
Credit points	16.0
Requirements according to the	Students complete literature translation and project tasks
examination regulations	(experiment, design or calculation) required by instructor;
	pass mid-term test; complete thesis.
Recommended prerequisites	Complete all theoretical courses
Module objectives/intended	Module objectives:
learning outcomes	The objective and tasks of Bachelor Thesis is to give students
	a chance to integrate acquired knowledge and develop
	students' abilities in using acquired theoretical knowledge
	and skills to analyze and solve practical problems.
	• Knowledge: Review and apply what have learned from
	courses and familiar with literature review and research
	methodology.
	• Skills: Develop students' overall abilities. Students
	receive comprehensive training required of senior
	technical personnel so as to develop various kinds of
	abilities such as ability in research and

	literature/document search, ability in theoretical
	analysis and design/experimental plan development,
	hardware and software development ability, data
	treatment and comprehensive analysis ability, and
	abilities in writing thesis, design instructions and
	abstract (in foreign language).
	• Competences: In the form of a completed project,
	Bachelor Thesis helps students review what has been
	learned and develop abilities in understanding,
	planning, executing and reporting project as well as
	cooperation abilities with instructors and classmates.
Content	Bachelor Thesis (12 weeks)
	(1) Topic presentation and literature reading & translation*
	(2 weeks)
	Complete topic selection according to requirements by
	USST and School of Energy and Power Engineering on
	Bachelor Thesis (scientific research or technical
	development topics of teachers; topic originating from
	production; mock topic related to production). Search
	literature independently or use recommendation from
	teachers (literature shall be translated). Instructors shall
	explain relevant language points for students and check
	students reading and translation of literature.
	(2) Research, experiment and calculation of topic ** (7 weeks)
	Work on Bachelor Thesis under the guidance of instructor;
	_
	submit proposal including literature review, plan verification, design thinking, schedule and
	instrument/equipment etc. Specific research includes topic
	background, relevant research work, plan development,
	experiment, calculation and data treatment etc. Analyze
	experimental or calculated results and draw conclusions.
	(3) Thesis writing and thesis defense** (3 weeks)
	Write thesis according to requirements by USST regarding
	format, content, length and originality and complete thesis
	within prescribed time limit. Supplementary materials are
	required by some topics such as engineering drawing,
	program and translated literature etc. Prepare for thesis
	defense.
Study and examination	Usual performance accounts for 40% of final score;
requirements and forms of	evaluation of thesis writing accounts for 20% of final score
examination	and thesis defense score accounts for 40% of final score (all
	are carried out according to Bachelor Thesis evaluation

Oniversity of shanghal for science and rechnology	
	method of USST)
Media employed	Multimedia computers, projector, laser pointers,
	experimental models
Reading list	1. Required books
	[1] Instructors recommend books to students according to
	specific proposal.
	2. Other materials
	[1] PPT courseware (self-compiled) used by teachers and
	enterprise technical personnel for explanation to students.